
TB3141
Implementing the Fast Fourier Transform (FFT) on

dsPIC® Digital Signal Controllers
INTRODUCTION
The Microchip dsPIC® Digital Signal Controllers (DSC)
have unique features for implementing DSP algo-
rithms, such as the Fast Fourier Transform (FFT) in
embedded systems. This Technical Brief explains how
to implement the FFT on dsPIC® DSCs using the DSP
library supplied with the MPLAB® XC16 C Compiler.

FFT LIBRARY FUNCTIONS
The MPLAB® XC16 C Compiler provides a DSP library
with functions for vector math, matrix math, digital
filters, window and transform functions, including the
Fast Fourier Transform (FFT). Most of the library func-
tions are written in optimized assembly to be as efficient
as possible. The functions also make use of the
hardware DSP features of the dsPIC® DSC controllers.

When using the DSP library in a project, the user must
include the header file, dsp.h, and add the library file,
libdsp-elf.a (or libdsp-coff.a for a project
using the COFF debug file format), to the project. Both
files are supplied with the compiler.

The DSP library function for implementing the 16-bit
FFT is FFTComplexIP().

EXAMPLE 1: FFTComplexIP()

log2N informs the function of what size FFT to use
(e.g., log2N = 8 implies 28 = 256-point FFT). srcCV
is a pointer to an array containing the input data.
twidFactors is a pointer to an array containing the
twiddle factors used by the FFT and factPage is an
address of the page in memory containing the twiddle
factors if they are stored in program memory. If
twidFactors is stored in RAM instead of program
memory, then factPage should be set to 0xFF00
(defined as COEFFS_IN_DATA in the dsp.h file).

When using twiddle factors stored in program
memory and accessed using PSV, the compiler
functions, __builtin_psvoffset() and
__builtin_psvpage(), can be used to get the
address and page information needed for the last two
parameters of the FFTComplexIP() function. An
example is shown in Example 2.

EXAMPLE 2: EXECUTING THE FFT

The data type, fractcomplex, is defined in header
file, dsp.h. The type definition is shown in Example 3.

EXAMPLE 3: fractcomplex DATA TYPE

A fractcomplex variable, therefore, is simply a struc-
ture containing two members of type fractional, which
represent the real and imaginary components of a data
point. A variable of type, fractcomplex, can be
declared and accessed as follows:

EXAMPLE 4: USING fractcomplex

In this example, inputData represents a fractional
complex number: 0.5 + 0.25j. Note the imaginary oper-
ator j is not present in the code or values used, but is
implied in the variable being the imaginary component.

Author: Fergus O’Kane
Microchip Technology Inc.

fractcomplex* FFTComplexIP (

 int log2N,

 fractcomplex* srcCV,

 fractcomplex* twidFactors,

 int factPage

);

// using FFTComplexIP with twiddle factors stored

// in flash program memory

FFTComplexIP(LOG2N, (fractcomplex*)&fftBuffer[0],

(fractcomplex*)__builtin_psvoffset

(&psvTwiddleFactors[0]),

__builtin_psvpage(&psvTwiddleFactors[0]));

typedef struct {

fractional real;

fractional imag;

} fractcomplex;

// declare variable ‘inputData’ to be type /

// fractcomplex

fractcomplex inputData;

// access members of ‘inputData’

inputData.real = Q15(0.5);

inputData.imag = Q15(0.25);
 2015 Microchip Technology Inc. Advance Information DS90003141A-page 1

TB3141

The FFTComplexIP() function expects both the input
data and twiddle factors to be in a fractcomplex
array and returns a pointer to the fractcomplex
array containing the FFT output. This function performs
the FFT in-place, which means the FFT output is
placed in the same array that contained the input data
(i.e., when the function completes, the output data has
overwritten the input data). Performing the FFT opera-
tion in-place saves RAM, as only one array is needed
for the input and output data, instead of two. However,
there is a version of the function, if needed, which does
not compute the result in-place, called FFTComplex().

Note that the FFTComplexIP()/FFTComplex()
function has a requirement that input data be in the
range, -0.5 to +0.5, to prevent overflow during the oper-
ation. If the data range is higher, it can be scaled by
shifting the data to the right. The DSP library has a
VectorScale() function that can be used for data
scaling.

The complementary Inverse FFT (IFFT) library function
is IFFTComplexIP().

EXAMPLE 5: IFFTComplexIP()

The usage is the same as the FFTComplexIP()
function, except that the twiddle factors are different for
the FFT and IFFT.

Twiddle Factors
Twiddle factors can be generated using the DSP library
function, TwidFactorInit().

EXAMPLE 6: TwidFactorInit()

The first argument of the function, log2N, informs the
function of what size FFT is being used (e.g., log2N = 8
implies 28 = 256-point FFT). twidFactors is a pointer to
an array which is used to store the twiddle factors and
conjFlag is a value that tells the function to generate
twiddle factors for either the FFT or Inverse FFT
(conjFlag = 0 for FFT, conjFlag = 1 for IFFT).

An example of using this function is shown below.

EXAMPLE 7: GENERATING TWIDDLE
FACTORS

Where twiddleFactors is an array of type,
fractcomplex, defined by the user, only N/2 twiddle
factors are needed for an FFT.

The twiddle factors generated by this function are
stored in an array in RAM. The array must be in
X-memory. Since the twiddle factor values only need to
be generated once and will not change, they could be
precalculated beforehand by the user and stored in
program memory. This would be appropriate if RAM is
limited in the application and needed for other
purposes.

To store precalculated twiddle factors in program mem-
ory, an array in PSV memory can be declared. This
allows the dsPIC® DSC instructions to access the data
in program memory as if it were in RAM.

EXAMPLE 8: TWIDDLE FACTORS IN
PROGRAM MEMORY

The twiddle factors are of type, fractcomplex,
containing both real and imaginary components.

Bit Reversal
The radix-2 Decimation-In-Frequency (DIF) FFT algo-
rithm changes the order of the data during processing
and a bit reversal function must be called to re-order
the data afterwards.

The BitReverseComplex() DSP library function
handles this bit-reversed sorting of data (the function
parameters, log2N and srcCV, are as previously
explained for the other functions).

EXAMPLE 9: BitReverseComplex()

Note that the hardware support for Bit-Reversed
Addressing in the dsPIC® DSC used by this function
requires that srcCV be aligned in a certain way in
memory. The address of the array must be a multiple of
the array size in bytes. For example, a 512-point FFT
having a fractcomplex array of 512 elements, with
each fractcomplex element being two words (four
bytes), would require srcCV to be aligned to a
512x2 = 1024-word or 2048-byte boundary. More infor-
mation on alignment and placing data in memory is
explained later.

fractcomplex* IFFTComplexIP (

 int log2N,

 fractcomplex* srcCV,

 fractcomplex* twidFactors,

 int factPage

);

fractcomplex* TwidFactorInit (

 int log2N,

 fractcomplex* twidFactors,

 int conjFlag

);

TwidFactorInit(LOG2N,&twiddleFactors[0], 0);

const fractcomplex twiddleFactors[FFT_SIZE/2]

__attribute__((space(auto_psv)))=

{

 //.. enter twiddle factor values

here

};

extern fractcomplex* BitReverseComplex (

 int log2N

 fractcomplex* srcCV

);
DS90003141A-page 2 Advance Information 2015 Microchip Technology Inc.

TB3141

Complex Squared Magnitude
The most useful way to view the Fourier Transform out-
put is as the squared magnitude. After the bit-reversed
operation is complete, the real and imaginary output of
the FFT is stored in the same fractcomplex array on
which the FFT was performed. The DSP library
function, SquareMagnitudeCplx(), can compute
the squared magnitude from this data.

EXAMPLE 10: SquareMagnitudeCplx

The argument, numElems, is the number of elements
in the input array, which should be the same as the FFT
size, srcV is the input array and dstV is an array of
type fractional to store the result.

Summary of FFT Library Functions
A summary of the 16-bit FFT library functions and the
order in which they are used is shown in Figure 1. The
TwidFactorInit() function is only needed if the
twiddle factors are to be created during run time and
stored in RAM.

FIGURE 1: FFT FUNCTION CALLS

Placing Data In Memory
The FFT library functions require data to be placed
appropriately in memory for correct operation. The
functions do not check for this correct placement as
it would increase the execution time. It is up to the
user to ensure data placement is correct. The
FFTComplexIP() function requires the twiddle factors
to be in X-memory or to be stored in a PSV section,
which the compiler will map into X-memory. Similarly,
the TwidFactorInit() function requires the
twidFactors array to be in X-memory. The source
vector, srcV, for the FFTComplexIP() function must
be located in Y-memory. Having the twiddle factors in
X-memory and the input data in Y-memory allows the
dsPIC® DSC to fetch data from both memory blocks
simultaneously. As previously explained, the
BitReverseComplex() function requires data to be
specially aligned according to the input array size. The
input array used in BitReverseComplex() should
be the same as the array used in FFTComplexIP(),
so it must be in Y-memory. The Square-
MagnitudeComplex() function would use the
same array as the BitReverseComplex() and
FFTComplexIP() functions, so this would have the
same properties mentioned already.

To summarize, the array containing the twiddle factors
must be either in X-memory in RAM or in a PSV section
if stored in Flash program memory, and the array
containing the input data/FFT result, which is used in
functions, FFTComplexIP(), BitReverseComplex()
and SquareMagnitudeComplex(), must be in
Y-memory, and aligned to a multiple of the array size in
bytes.

The MPLAB® XC16 C Compiler provides attributes that
can be applied to variables to control where they are
placed in memory. Relevant examples are provided in
Example 11.

EXAMPLE 11: PLACING VARIABLES IN
MEMORY

extern fractional* SquareMagnitudeCplx (

 int numElems,

 fractcomplex* srcV,

 fractional* dstV

);

TwidFactorInit

FFTComplexIP

BitReverseComplex

SquareMagnitudeCplx

/* place array fftBuffer in Y-memory aligned

to the size of the array in bytes */

fractcomplex fftBuffer[FFT_SIZE]

__attribute__((space(ymemory),aligned

(FFT_SIZE*2*2)));

// place array twiddleFactors in X-memory

fractcomplex twiddleFactors[FFT_SIZE/2]

__attribute__((space(xmemory)));
 2015 Microchip Technology Inc. Advance Information DS90003141A-page 3

TB3141

Note that the position of the Y-memory block in RAM
may be different depending on the dsPIC® DSC device
used. The first 8 Kbytes of RAM, from address 0x0000
to 0x1FFF, is called “near memory”. Depending on the
device, Y-memory may be within this 8-Kbyte near
memory range or may be outside of it. The MPLAB
XC16 C Compiler tries to place variables in near mem-
ory by default, known as the small data memory model.
If addresses higher than 0x2000 are needed, or if
Y-memory is above 0x2000, then the compiler large
data memory model must be used, or the far attribute
must be applied to the variable(s) which will be placed
outside of near memory. The memory model option can
be selected in the compiler settings. More detailed
information on the memory models and attributes can
be found in the compiler user guide.

EXAMPLE 12: FAR MEMORY ATTRIBUTE

Furthermore, note that the dsPIC33E families of DSCs
have a feature known as Extended Data Space (EDS),
which must be taken into account. These devices have
more RAM than the dsPIC33F families and use EDS to
access the higher addresses. On some dsPIC33E
devices, the Y-memory block may be above address,
0x7FFF. If it is, the EDS attribute must be applied to the
variables to be located in Y-memory. Without the cor-
rect attribute, a linker error will occur when compiling
the code.

EXAMPLE 13: EDS MEMORY ATTRIBUTE

FFT Output
It is often needed to find the maximum frequency com-
ponent in the output spectrum. To find this frequency,
the data from the squared magnitude operation can be
checked to find the frequency bin number where the
maximum value occurs. The DSP library includes a
VectorMax() function which can be used for this.
Once the bin number is found, it can be translated to a
frequency by using the formula in Equation 1. The
sampling frequency, divided by the FFT size, is the
resolution of the FFT, so the operation is essentially
multiplying the frequency bin number by the FFT
resolution. Note that since the FFT output is mirrored,
only the first FFT_SIZE/2 elements of the output array
need to be checked.

EQUATION 1: CALCULATE MAXIMUM
FREQUENCY

EQUATION 2: CALCULATION FOR
BIN NUMBER 3

As an example, considering an input signal sampled at
8,192 Hz, the FFT size is 256 points and the bin
number where the maximum value occurs is 3, the
resulting frequency would be 96 Hz.

EXAMPLE 14: FINDING MAXIMUM
FREQUENCY COMPONENT
FROM FFT OUTPUT

/* place array fftBuffer in Y-memory aligned

to the size of the array in bytes */

fractcomplex fftBuffer[FFT_SIZE]

__attribute__((space(ymemory), far, aligned

(FFT_SIZE*2*2)));

/* place array fftBuffer in Y-memory aligned

to the size of the array in bytes */

fractcomplex fftBuffer[FFT_SIZE]

__attribute__((space(ymemory), eds, aligned

(FFT_SIZE*2*2)));

Where:
FMAX is the maximum frequency component to
be found
bin is the frequency bin number where the maximum
value occurs
FSAMP is the sampling frequency
FFT_SIZE is the size of the FFT

FMAX = bin • (FSAMP/FFT_SIZE)

FMAX = 3 • (8192 Hz/256) = 96 Hz

// variable definitions

fractional squaredMagnitude[FFT_SIZE];

fractional fftMaxValue;

int16_t fftMaxValueBin;

uint16_t peakFrequencyHz;

// find the max value in the magnitude vector and /

// which bin it is in

fftMaxValue = VectorMax(FFT_SIZE/2,

(fractional*)&squaredMagnitude[0],

(int16_t*)&fftMaxValueBin);

// Compute the frequency (in Hz) of the largest //

// spectral component

peakFrequencyHz = fftMaxValueBin *

(SAMPLING_FREQUENCY_HZ / FFT_SIZE);
DS90003141A-page 4 Advance Information 2015 Microchip Technology Inc.

TB3141
CONCLUSION
The unique DSP features of the dsPIC® Digital Signal
Controllers make them a good fit for applications which
require an FFT. The DSP library supplied with the
MPLAB® XC16 C Compiler makes it easy for the
developer to use an FFT in their application.

REFERENCES
• “dsPIC33E/PIC24E Family Reference Manual”,

Section 2. “CPU” (DS70359)
• “16-Bit Language Tools Libraries Reference

Manual” (DS50001456)
• “MPLAB® XC16 C Compiler User’s Guide”

(DS50002071)
• MPLAB® XC16 C Compiler DSP Library Help file
 2015 Microchip Technology Inc. Advance Information DS90003141A-page 5

TB3141

NOTES:
DS90003141A-page 6 Advance Information 2015 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2015 Microchip Technology Inc. Advance Info

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2015, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

ISBN: 978-1-63277-683-9

Microchip received ISO/TS-16949:2009 certification for its worldwide
rmation DS90003141A-page 7

headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS90003141A-page 8 Advance Information 2015 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

07/14/15

http://support.microchip.com
http://www.microchip.com

	Introduction
	FFT Library Functions
	EXAMPLE 1: FFTComplexIP()
	EXAMPLE 2: Executing the FFT
	EXAMPLE 3: fractcomplex Data Type
	EXAMPLE 4: Using fractcomplex
	EXAMPLE 5: IFFTComplexIP()
	Twiddle Factors
	EXAMPLE 6: TwidFactorInit()
	EXAMPLE 7: Generating Twiddle Factors
	EXAMPLE 8: Twiddle Factors in Program Memory

	Bit Reversal
	EXAMPLE 9: BitReverseComplex()

	Complex Squared Magnitude
	EXAMPLE 10: SquareMagnitudeCplx

	Summary of FFT Library Functions
	FIGURE 1: FFT Function Calls

	Placing Data In Memory
	EXAMPLE 11: Placing Variables in Memory
	EXAMPLE 12: Far Memory Attribute
	EXAMPLE 13: EDS Memory Attribute

	FFT Output
	EQUATION 1: Calculate Maximum Frequency
	EQUATION 2: Calculation for Bin Number 3
	EXAMPLE 14: Finding Maximum Frequency Component from FFT Output

	Conclusion
	References
	Worldwide Sales and Service

