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Implementing the Fast Fourier Transform (FFT) on 

dsPIC® Digital Signal Controllers
INTRODUCTION
The Microchip dsPIC® Digital Signal Controllers (DSC)
have unique features for implementing DSP algo-
rithms, such as the Fast Fourier Transform (FFT) in
embedded systems. This Technical Brief explains how
to implement the FFT on dsPIC® DSCs using the DSP
library supplied with the MPLAB® XC16 C Compiler. 

FFT LIBRARY FUNCTIONS
The MPLAB® XC16 C Compiler provides a DSP library
with functions for vector math, matrix math, digital
filters, window and transform functions, including the
Fast Fourier Transform (FFT). Most of the library func-
tions are written in optimized assembly to be as efficient
as possible. The functions also make use of the
hardware DSP features of the dsPIC® DSC controllers.

When using the DSP library in a project, the user must
include the header file, dsp.h, and add the library file,
libdsp-elf.a (or libdsp-coff.a for a project
using the COFF debug file format), to the project. Both
files are supplied with the compiler.

The DSP library function for implementing the 16-bit
FFT is FFTComplexIP().

EXAMPLE 1: FFTComplexIP()

log2N informs the function of what size FFT to use
(e.g., log2N = 8 implies 28 = 256-point FFT). srcCV
is a pointer to an array containing the input data.
twidFactors is a pointer to an array containing the
twiddle factors used by the FFT and factPage is an
address of the page in memory containing the twiddle
factors if they are stored in program memory. If
twidFactors is stored in RAM instead of program
memory, then factPage should be set to 0xFF00
(defined as COEFFS_IN_DATA in the dsp.h file).

When using twiddle factors stored in program
memory and accessed using PSV, the compiler
functions, __builtin_psvoffset() and
__builtin_psvpage(), can be used to get the
address and page information needed for the last two
parameters of the FFTComplexIP() function. An
example is shown in Example 2.

EXAMPLE 2: EXECUTING THE FFT

The data type, fractcomplex, is defined in header
file, dsp.h. The type definition is shown in Example 3.

EXAMPLE 3: fractcomplex DATA TYPE

A fractcomplex variable, therefore, is simply a struc-
ture containing two members of type fractional, which
represent the real and imaginary components of a data
point. A variable of type, fractcomplex, can be
declared and accessed as follows:

EXAMPLE 4: USING fractcomplex

In this example, inputData represents a fractional
complex number: 0.5 + 0.25j. Note the imaginary oper-
ator j is not present in the code or values used, but is
implied in the variable being the imaginary component.

Author: Fergus O’Kane
Microchip Technology Inc.

fractcomplex* FFTComplexIP (

   int log2N,

   fractcomplex* srcCV,

   fractcomplex* twidFactors,

   int factPage

);

// using FFTComplexIP with twiddle factors stored

// in flash program memory

FFTComplexIP(LOG2N, (fractcomplex*)&fftBuffer[0], 

(fractcomplex*)__builtin_psvoffset

(&psvTwiddleFactors[0]), 

__builtin_psvpage(&psvTwiddleFactors[0]));

typedef struct {

fractional real;

fractional imag;

} fractcomplex;

// declare variable ‘inputData’ to be type /

// fractcomplex

fractcomplex inputData;

// access members of ‘inputData’

inputData.real = Q15(0.5);

inputData.imag = Q15(0.25);
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The FFTComplexIP() function expects both the input
data and twiddle factors to be in a fractcomplex
array and returns a pointer to the fractcomplex
array containing the FFT output. This function performs
the FFT in-place, which means the FFT output is
placed in the same array that contained the input data
(i.e., when the function completes, the output data has
overwritten the input data). Performing the FFT opera-
tion in-place saves RAM, as only one array is needed
for the input and output data, instead of two. However,
there is a version of the function, if needed, which does
not compute the result in-place, called FFTComplex(). 

Note that the FFTComplexIP()/FFTComplex()
function has a requirement that input data be in the
range, -0.5 to +0.5, to prevent overflow during the oper-
ation. If the data range is higher, it can be scaled by
shifting the data to the right. The DSP library has a
VectorScale() function that can be used for data
scaling.

The complementary Inverse FFT (IFFT) library function
is IFFTComplexIP().

EXAMPLE 5: IFFTComplexIP()

The usage is the same as the FFTComplexIP()
function, except that the twiddle factors are different for
the FFT and IFFT. 

Twiddle Factors
Twiddle factors can be generated using the DSP library
function, TwidFactorInit(). 

EXAMPLE 6: TwidFactorInit()

The first argument of the function, log2N, informs the
function of what size FFT is being used (e.g., log2N = 8
implies 28 = 256-point FFT). twidFactors is a pointer to
an array which is used to store the twiddle factors and
conjFlag is a value that tells the function to generate
twiddle factors for either the FFT or Inverse FFT
(conjFlag = 0 for FFT, conjFlag = 1 for IFFT).

An example of using this function is shown below.

EXAMPLE 7: GENERATING TWIDDLE 
FACTORS

Where twiddleFactors is an array of type,
fractcomplex, defined by the user, only N/2 twiddle
factors are needed for an FFT. 

The twiddle factors generated by this function are
stored in an array in RAM. The array must be in
X-memory. Since the twiddle factor values only need to
be generated once and will not change, they could be
precalculated beforehand by the user and stored in
program memory. This would be appropriate if RAM is
limited in the application and needed for other
purposes.

To store precalculated twiddle factors in program mem-
ory, an array in PSV memory can be declared. This
allows the dsPIC® DSC instructions to access the data
in program memory as if it were in RAM.

EXAMPLE 8: TWIDDLE FACTORS IN 
PROGRAM MEMORY

The twiddle factors are of type, fractcomplex,
containing both real and imaginary components. 

Bit Reversal
The radix-2 Decimation-In-Frequency (DIF) FFT algo-
rithm changes the order of the data during processing
and a bit reversal function must be called to re-order
the data afterwards. 

The BitReverseComplex() DSP library function
handles this bit-reversed sorting of data (the function
parameters, log2N and srcCV, are as previously
explained for the other functions).

EXAMPLE 9: BitReverseComplex()

Note that the hardware support for Bit-Reversed
Addressing in the dsPIC® DSC used by this function
requires that srcCV be aligned in a certain way in
memory. The address of the array must be a multiple of
the array size in bytes. For example, a 512-point FFT
having a fractcomplex array of 512 elements, with
each fractcomplex element being two words (four
bytes), would require srcCV to be aligned to a
512x2 = 1024-word or 2048-byte boundary. More infor-
mation on alignment and placing data in memory is
explained later.

fractcomplex* IFFTComplexIP (

   int log2N,

   fractcomplex* srcCV,

   fractcomplex* twidFactors,

   int factPage

);

fractcomplex* TwidFactorInit (

   int log2N,

   fractcomplex* twidFactors,

   int conjFlag

);

TwidFactorInit(LOG2N,&twiddleFactors[0], 0);

const fractcomplex twiddleFactors[FFT_SIZE/2] 

__attribute__((space(auto_psv)))=

{

        //.. enter twiddle factor values 

here

};

extern fractcomplex* BitReverseComplex (

   int log2N

   fractcomplex* srcCV

);
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Complex Squared Magnitude
The most useful way to view the Fourier Transform out-
put is as the squared magnitude. After the bit-reversed
operation is complete, the real and imaginary output of
the FFT is stored in the same fractcomplex array on
which the FFT was performed. The DSP library
function, SquareMagnitudeCplx(), can compute
the squared magnitude from this data. 

EXAMPLE 10: SquareMagnitudeCplx

The argument, numElems, is the number of elements
in the input array, which should be the same as the FFT
size, srcV is the input array and dstV is an array of
type fractional to store the result.

Summary of FFT Library Functions
A summary of the 16-bit FFT library functions and the
order in which they are used is shown in Figure 1. The
TwidFactorInit() function is only needed if the
twiddle factors are to be created during run time and
stored in RAM. 

FIGURE 1: FFT FUNCTION CALLS

Placing Data In Memory
The FFT library functions require data to be placed
appropriately in memory for correct operation. The
functions do not check for this correct placement as
it would increase the execution time. It is up to the
user to ensure data placement is correct. The
FFTComplexIP() function requires the twiddle factors
to be in X-memory or to be stored in a PSV section,
which the compiler will map into X-memory. Similarly,
the TwidFactorInit() function requires the
twidFactors array to be in X-memory. The source
vector, srcV, for the FFTComplexIP() function must
be located in Y-memory. Having the twiddle factors in
X-memory and the input data in Y-memory allows the
dsPIC® DSC to fetch data from both memory blocks
simultaneously. As previously explained, the
BitReverseComplex() function requires data to be
specially aligned according to the input array size. The
input array used in BitReverseComplex() should
be the same as the array used in FFTComplexIP(),
so it must be in Y-memory. The Square-
MagnitudeComplex() function would use the
same array as the BitReverseComplex() and
FFTComplexIP() functions, so this would have the
same properties mentioned already.

To summarize, the array containing the twiddle factors
must be either in X-memory in RAM or in a PSV section
if stored in Flash program memory, and the array
containing the input data/FFT result, which is used in
functions, FFTComplexIP(), BitReverseComplex()
and SquareMagnitudeComplex(), must be in
Y-memory, and aligned to a multiple of the array size in
bytes.

The MPLAB® XC16 C Compiler provides attributes that
can be applied to variables to control where they are
placed in memory. Relevant examples are provided in
Example 11.

EXAMPLE 11: PLACING VARIABLES IN 
MEMORY

extern fractional* SquareMagnitudeCplx (

   int numElems,

   fractcomplex* srcV,

   fractional* dstV

);

TwidFactorInit

FFTComplexIP

BitReverseComplex

SquareMagnitudeCplx

/* place array fftBuffer in Y-memory aligned 

to the size of the array in bytes */

fractcomplex fftBuffer[FFT_SIZE] 

__attribute__((space(ymemory),aligned

(FFT_SIZE*2*2)));

// place array twiddleFactors in X-memory 

fractcomplex twiddleFactors[FFT_SIZE/2] 

__attribute__((space(xmemory)));
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Note that the position of the Y-memory block in RAM
may be different depending on the dsPIC® DSC device
used. The first 8 Kbytes of RAM, from address 0x0000
to 0x1FFF, is called “near memory”. Depending on the
device, Y-memory may be within this 8-Kbyte near
memory range or may be outside of it. The MPLAB
XC16 C Compiler tries to place variables in near mem-
ory by default, known as the small data memory model.
If addresses higher than 0x2000 are needed, or if
Y-memory is above 0x2000, then the compiler large
data memory model must be used, or the far attribute
must be applied to the variable(s) which will be placed
outside of near memory. The memory model option can
be selected in the compiler settings. More detailed
information on the memory models and attributes can
be found in the compiler user guide.

EXAMPLE 12: FAR MEMORY ATTRIBUTE

Furthermore, note that the dsPIC33E families of DSCs
have a feature known as Extended Data Space (EDS),
which must be taken into account. These devices have
more RAM than the dsPIC33F families and use EDS to
access the higher addresses. On some dsPIC33E
devices, the Y-memory block may be above address,
0x7FFF. If it is, the EDS attribute must be applied to the
variables to be located in Y-memory. Without the cor-
rect attribute, a linker error will occur when compiling
the code.

EXAMPLE 13: EDS MEMORY ATTRIBUTE

FFT Output
It is often needed to find the maximum frequency com-
ponent in the output spectrum. To find this frequency,
the data from the squared magnitude operation can be
checked to find the frequency bin number where the
maximum value occurs. The DSP library includes a
VectorMax() function which can be used for this.
Once the bin number is found, it can be translated to a
frequency by using the formula in Equation 1. The
sampling frequency, divided by the FFT size, is the
resolution of the FFT, so the operation is essentially
multiplying the frequency bin number by the FFT
resolution. Note that since the FFT output is mirrored,
only the first FFT_SIZE/2 elements of the output array
need to be checked. 

EQUATION 1: CALCULATE MAXIMUM 
FREQUENCY

EQUATION 2: CALCULATION FOR 
BIN NUMBER 3

As an example, considering an input signal sampled at
8,192 Hz, the FFT size is 256 points and the bin
number where the maximum value occurs is 3, the
resulting frequency would be 96 Hz.

EXAMPLE 14: FINDING MAXIMUM 
FREQUENCY COMPONENT 
FROM FFT OUTPUT

/* place array fftBuffer in Y-memory aligned 

to the size of the array in bytes */

fractcomplex fftBuffer[FFT_SIZE] 

__attribute__((space(ymemory), far, aligned 

(FFT_SIZE*2*2)));

/* place array fftBuffer in Y-memory aligned 

to the size of the array in bytes */

fractcomplex fftBuffer[FFT_SIZE] 

__attribute__((space(ymemory), eds, aligned 

(FFT_SIZE*2*2)));

Where: 
FMAX is the maximum frequency component to 
be found
bin is the frequency bin number where the maximum 
value occurs
FSAMP is the sampling frequency
FFT_SIZE is the size of the FFT

FMAX = bin • (FSAMP/FFT_SIZE)

FMAX = 3 • (8192 Hz/256) = 96 Hz

// variable definitions

fractional squaredMagnitude[FFT_SIZE];

fractional fftMaxValue;

int16_t fftMaxValueBin;

uint16_t peakFrequencyHz;

// find the max value in the magnitude vector and /

// which bin it is in

fftMaxValue = VectorMax(FFT_SIZE/2, 

(fractional*)&squaredMagnitude[0], 

(int16_t*)&fftMaxValueBin);

// Compute the frequency (in Hz) of the largest //

// spectral component 

peakFrequencyHz = fftMaxValueBin * 

(SAMPLING_FREQUENCY_HZ / FFT_SIZE);
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CONCLUSION
The unique DSP features of the dsPIC® Digital Signal
Controllers make them a good fit for applications which
require an FFT. The DSP library supplied with the
MPLAB® XC16 C Compiler makes it easy for the
developer to use an FFT in their application.

REFERENCES
• “dsPIC33E/PIC24E Family Reference Manual”, 
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 2015 Microchip Technology Inc. Advance Information DS90003141A-page 5



TB3141

NOTES:
DS90003141A-page 6 Advance Information  2015 Microchip Technology Inc.



Note the following details of the code protection feature on Microchip devices:
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• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”
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applications and the like is provided only for your convenience
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intellectual property rights unless otherwise stated.
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