
Section 38. Direct Memory Access (DMA) (Part III)
D
irect M

em
ory 

A
ccess (D

M
A

) 
(Part III)

38
HIGHLIGHTS
This section of the manual contains the following major topics:

38.1 Introduction .................................................................................................................. 38-2
38.2 DMA Registers.............................................................................................................38-4
38.3 DMA Block Diagram...................................................................................................38-12
38.4 DMA Data Transfer ....................................................................................................38-13
38.5 DMA Set Up ...............................................................................................................38-15
38.6 DMA Operating Modes .............................................................................................. 38-21
38.7 Starting DMA Transfer................................................................................................38-45
38.8 DMA Channel Arbitration and Overruns .................................................................... 38-47
38.9 Debugging Support .................................................................................................... 38-49
38.10 Data Write Collisions.................................................................................................. 38-49
38.11 Operation in Power-Saving Modes ............................................................................38-50
38.12 Register Map.............................................................................................................. 38-51
38.13 Related Application Notes.......................................................................................... 38-53
38.14 Revision History .........................................................................................................38-54
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-1



dsPIC33F/PIC24H Family Reference Manual
38.1  INTRODUCTION
The Direct Memory Access (DMA) controller is an important subsystem in Microchip's 
high-performance 16-bit Digital Signal Controller (DSC) families. This subsystem facilitates the 
transfer of data between the CPU and its peripheral without CPU assistance. The 
dsPIC33F/PIC24H DMA controller is optimized for high-performance, real-time, embedded 
applications, where determinism and system latency are priorities.

The DMA controller transfers data between peripheral data registers and data space SRAM. The 
dsPIC33F/PIC24H DMA subsystem uses Dual Port SRAM (DPSRAM) memory and register 
structures that allow the DMA to operate across its own, independent address and data buses 
with no impact on CPU operation. This architecture eliminates the need for cycle stealing, which 
halts the CPU when a higher priority DMA transfer is requested. Both the CPU and DMA 
controller can write and read to/from addresses within data space without interference, such as 
CPU stalls, resulting in maximized, real-time performance. Alternately, DMA operation and data 
transfer to/from the memory and peripherals are not impacted by CPU processing. For example, 
when a Run-Time Self-Programming (RTSP) operation is performed, the CPU does not execute 
any instructions until RTSP is finished. This condition, however, does not impact data transfer 
to/from memory and the peripherals. Figure 38-1 illustrates the DMA setup. 

Figure 38-1: DMA Controller

Note: This family reference manual section is meant to serve as a complement to device 
data sheets. Depending on the device variant, this manual section may not apply to 
all dsPIC33F/PIC24H devices.

Please consult the note at the beginning of the “Direct Memory Access (DMA)”
chapter in the current device data sheet to check whether this document supports 
the device you are using.

Device data sheets and family reference manual sections are available for 
download from the Microchip Worldwide Web site at: http://www.microchip.com

DMA CPU

DPSRAM

Peripheral
DS70215C-page 38-2 © 2007-2012 Microchip Technology Inc.

http://www.microchip.com


Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
The DMA controller supports eight independent channels. Each channel can be configured for 
transfers to/from selected peripherals. Peripherals supported by the DMA controller include:

• Enhanced Controller Area Network (ECAN™) technology
• Data Converter Interface (DCI)
• 10-bit/12-bit Analog-to-Digital Converter (ADC)
• Serial Peripheral Interface (SPI)
• Universal Asynchronous Receiver Transmitter (UART)
• Input Capture
• Output Compare
• Digital-to-Analog Converter (DAC)
• Parallel Master Port (PMP)

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA 
channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. 
Should more than one channel receive a request to transfer data, a simple fixed priority scheme, 
based on channel number, dictates which channel completes the transfer and which channel, or 
channels, are left pending. Each DMA channel moves a block of up to 1024 data elements, after 
which it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA controller provides these functional capabilities:

• Eight DMA channels
• Register Indirect with Post-Increment Addressing mode
• Register Indirect without Post-Increment Addressing mode
• Peripheral Indirect Addressing mode (peripheral generates destination address)
• CPU interrupt after half or full block transfer complete
• Byte or word transfers
• Fixed priority channel arbitration
• Manual (software) or Automatic (peripheral DMA requests) transfer initiation
• One-shot or Auto-repeat block transfer modes
• Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block 

transfer completes)
• DMA request for each channel can be selected from any supported interrupt source
• Debug support features
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-3



dsPIC33F/PIC24H Family Reference Manual
38.2  DMA REGISTERS
Each DMA channel has a set of six status and control registers.

• DMAxCON: DMA Channel x Control Register 
This register configures the corresponding DMA channel by enabling/disabling the channel, 
specifying data transfer size, direction and block interrupt method, and selecting DMA 
Channel Addressing mode, Operating mode and Null Data Write mode.

• DMAxREQ: DMA Channel x IRQ Select Register
This register associates the DMA channel with a specific DMA capable peripheral by 
assigning the peripheral IRQ to the DMA channel.

• DMAxSTA: DMA Channel x DPSRAM Start Address Offset Register A
This register specifies the primary start address offset from the DMA DPSRAM base 
address of the data block to be transferred by DMA channel x to or from the DPSRAM. 
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes 
to this register while the channel x is enabled (that is, active) may result in unpredictable 
behavior and should be avoided.

• DMAxSTB: DMA Channel x DPSRAM Start Address Offset Register B
This register specifies the secondary start address offset from the DMA DPSRAM base 
address of the data block to be transferred by DMA channel x to or from the DPSRAM. 
Reads of this register return the value of the latest DPSRAM transfer address offset. Writes 
to this register while the channel x is enabled (that is, active) may result in unpredictable 
behavior and should be avoided.

• DMAxPAD: DMA Channel x Peripheral Address Register
This read/write register contains the static address of the peripheral data register. Writes to 
this register while the corresponding DMA channel is enabled (that is, active) may result in 
unpredictable behavior and should be avoided.

• DMAxCNT: DMA Channel x Transfer Count Register
This register contains the transfer count. DMAxCNT + 1 represents the number of DMA 
requests the channel must service before the data block transfer is considered complete. 
That is, a DMAxCNT value of ‘0’ will transfer one element. The value of the DMAxCNT 
register is independent of the transfer data size (SIZE bit in the DMAxCON register). Writes 
to this register while the corresponding DMA channel is enabled (that is, active) may result 
in unpredictable behavior and should be avoided.

In addition to the individual DMA channel registers, the DMA Controller has these three DMA 
status registers.

• DSADR: Most Recent DMA DPSRAM Address Register
This 16-bit, read-only, status register is common to all DMA channels. It captures the 
address of the most recent DPSRAM access (read or write). It is cleared at Reset and, 
therefore, contains the value ‘0x0000’ if read prior to any DMA activity. This register is 
accessible at any time but is primarily intended as a debug aid. 

• DMACS0: DMA Controller Status Register 0
This 16-bit, read-only, status register contains the DPSRAM and Peripheral Write Collision 
flags, XWCOLx and PWCOLx, respectively. For more information, refer to 38.10 “Data 
Write Collisions”. 

• DMACS1: DMA Controller Status Register 1
This 16-bit, read-only, status register indicates which DMA channel was most recently active 
and provides the Ping-Pong mode status of each DMA channel by indicating which DMA 
Channel x DPSRAM Start Address Offset register, DMAxSTA or DMAxSTB, is selected.
DS70215C-page 38-4 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
             

Register 38-1: DMAXCON: DMA Channel X Control Register 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0
CHEN SIZE DIR HALF NULLW — — —

bit 15 bit 8

U-0 U-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0
— — AMODE<1:0> — — MODE<1:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 CHEN: Channel Enable bit
1 = Channel enabled
0 = Channel disabled

bit 14 SIZE: Data Transfer Size bit
1 = Byte
0 = Word

bit 13 DIR: Transfer Direction bit (source/destination bus select)
1 = Read from DPSRAM address, write to peripheral address
0 = Read from Peripheral address, write to DPSRAM address

bit 12 HALF: Block Transfer Interrupt Select bit
1 = Initiate interrupt when half of the data has been moved
0 = Initiate interrupt when all of the data has been moved

bit 11 NULLW: Null Data Peripheral Write Mode Select bit
1 = Null data write to peripheral in addition to DPSRAM write (DIR bit must also be clear)
0 = Normal operation

bit 10-6 Unimplemented: Read as ‘0’
bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits

11 = Reserved 
10 = Peripheral Indirect Addressing mode
01 = Register Indirect without Post-Increment mode
00 = Register Indirect with Post-Increment mode

bit 3-2 Unimplemented: Read as ‘0’
bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits

11 = One-shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)
10 = Continuous, Ping-Pong modes enabled
01 = One-shot, Ping-Pong modes disabled
00 = Continuous, Ping-Pong modes disabled
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-5



dsPIC33F/PIC24H Family Reference Manual
 

Register 38-2: DMAXREQ: DMA Channel X IRQ Select Register

R/HC-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
FORCE(1) — — — — — — —

bit 15 bit 8

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— IRQSEL<6:0>

bit 7 bit 0

Legend: HC = Cleared by Hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 FORCE: Force DMA Transfer bit(1)

1 = Force a single DMA transfer (manual mode)
0 = Automatic DMA transfer initiation by DMA Request

bit 14-7 Unimplemented: Read as ‘0’
bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits

1001111 = DAC1 Left Data Output (DAC1)
1001110 = DAC1 Right Data Output (DAC1)
1000110 = TX Data Request (ECAN1)
0111100 = CODEC Transfer Done (DCI)
0101101 = PMP Master Data Transfer (PMP)
0100010 = RX Data Ready (ECAN1)
0100001 = SPI2 Transfer Done (SPI2)
0011111 = UART2 Transmitter (UART2TX)
0011110 = UART2 Receiver (UART2RX)
0001101 = ADC1 Convert Done (ADC1)
0001100 = UART1 Transmitter (UART1TX)
0001011 = UART1 Receiver (UART1RX)
0001010 = Transfer Done (SPI1)
0001000 = Timer3 (TMR3)
0000111 = Timer2 (TMR2)
0000110 = Output Compare 2 (OC2)
0000101 = Input Capture 2 (IC2)
0000010 = Output Compare 1 (OC1)
0000001 = Input Capture 1 (IC1)
0000000 = External Interrupt 0 (INT0)

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced 
DMA transfer is complete.
DS70215C-page 38-6 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
 

Register 38-3: DMAXSTA: DMA Channel X DPSRAM Start Address Offset Register A 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 STA<15:0>: Primary DPSRAM Start Address Offset bits (source or destination) 

Register 38-4: DMAXSTB: DMA Channel X DPSRAM Start Address Offset Register B 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
STB<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 STB<15:0>: Secondary DPSRAM Start Address Offset bits (source or destination) 

Register 38-5: DMAXPAD: DMA Channel X Peripheral Address Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PAD<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 PAD<15:0>: Peripheral Address Register bits
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-7



dsPIC33F/PIC24H Family Reference Manual
 

Register 38-6: DMAXCNT: DMA Channel X Transfer Count Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — — — — CNT<9:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CNT<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-10 Reserved
bit 9-0 CNT<9:0>: DMA Transfer Count Register bits

Register 38-7: DSADR: Most Recent DMA DPSRAM Address Register

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<15:8>

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DSADR<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DSADR<15:0>: Most Recent DMA DPSRAM Address Accessed by DMA bits
DS70215C-page 38-8 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
             

Register 38-8: DMACS0: DMA Controller Status Register 0 

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 PWCOL7: Channel 7 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 14 PWCOL6: Channel 6 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 13 PWCOL5: Channel 5 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 12 PWCOL4: Channel 4 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 11 PWCOL3: Channel 3 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 10 PWCOL2: Channel 2 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 9 PWCOL1: Channel 1 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 8 PWCOL0: Channel 0 Peripheral Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 7 XWCOL7: Channel 7 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 6 XWCOL6: Channel 6 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 5 XWCOL5: Channel 5 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 4 XWCOL4: Channel 4 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-9



dsPIC33F/PIC24H Family Reference Manual
bit 3 XWCOL3: Channel 3 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 2 XWCOL2: Channel 2 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 1 XWCOL1: Channel 1 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

bit 0 XWCOL0: Channel 0 DPSRAM Write Collision Flag bit
1 = Write collision detected
0 = No write collision detected

Register 38-8: DMACS0: DMA Controller Status Register 0 (Continued)
DS70215C-page 38-10 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
 

Register 38-9: DMACS1: DMA Controller Status Register 1 

U-0 U-0 U-0 U-0 R-1 R-1 R-1 R-1
— — — — LSTCH<3:0>

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as ‘0’
bit 11-8 LSTCH<3:0>: Last DMAC Channel Active bits

1111 = No DMA transfer has occurred since system reset
1110-1000 = Reserved
0111 = Last data transfer was by Channel 7
0110 = Last data transfer was by Channel 6
0101 = Last data transfer was by Channel 5
0100 = Last data transfer was by Channel 4
0011 = Last data transfer was by Channel 3
0010 = Last data transfer was by Channel 2
0001 = Last data transfer was by Channel 1
0000 = Last data transfer was by Channel 0
Set to ‘1111’ at Reset. This field is accessible at any time but is primarily intended as a debugging aid.

bit 7 PPST7: Channel 7 Ping-Pong Mode Status Flag bit
1 = DMA7STB register selected
0 = DMA7STA register selected

bit 6 PPST6: Channel 6 Ping-Pong Mode Status Flag bit
1 = DMA6STB register selected
0 = DMA6STA register selected

bit 5 PPST5: Channel 5 Ping-Pong Mode Status Flag bit
1 = DMA5STB register selected
0 = DMA5STA register selected

bit 4 PPST4: Channel 4 Ping-Pong Mode Status Flag bit
1 = DMA4STB register selected
0 = DMA4STA register selected

bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit
1 = DMA3STB register selected
0 = DMA3STA register selected

bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit
1 = DMA2STB register selected
0 = DMA2STA register selected

bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit
1 = DMA1STB register selected
0 = DMA1STA register selected

bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit
1 = DMA0STB register selected
0 = DMA0STA register selected

Note: This register is read-only.
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-11



dsPIC33F/PIC24H Family Reference Manual
38.3  DMA BLOCK DIAGRAM
Figure 38-2 illustrates a block diagram that shows how the DMA integrates into the 
dsPIC33F/PIC24H internal architecture. The CPU communicates with conventional SRAM 
across the X-bus. It also communicates with Port 1 of the DPSRAM block across the 
same X-bus. The CPU communicates with the peripherals across a separate peripheral X-bus, 
which also resides within X data space.

The DMA channels communicate with Port 2 of the DPSRAM and the DMA port of each of the 
DMA-ready peripherals across a dedicated DMA bus. 

Figure 38-2: DMA Controller Block Diagram

Unlike other architectures, the dsPIC33F/PIC24H CPU is capable of a read and a write access 
within each CPU bus cycle. Similarly, the DMA can complete the transfer of a byte or word every 
bus cycle across its dedicated bus. This also ensures that all DMA transfers are not interrupted. 
That is, once the transfer has started, it will complete within the same cycle, irrespective of other 
channel activity.

The user application can designate any DMA-ready peripheral interrupt to be a DMA request, the 
term given to an IRQ when it is directed to the DMA. It is assumed, of course, that when a DMA 
channel is configured to respond to a particular interrupt as a DMA request, the corresponding 
CPU interrupt is disabled, otherwise a CPU interrupt will also be requested.

Each DMA channel can also be triggered manually through software. Setting the Force DMA 
Transfer bit (FORCE) in the DMA Channel X IRQ Select register (DMAxREQ) initiates a manual 
DMA request that is subject to the same arbitration as all interrupt based DMA requests 
(see 38.8 “DMA Channel Arbitration and Overruns”).

CPU

SRAM DPSRAM Peripheral 1

DMA

Peripheral
Non-DMA

PORT 2PORT 1

Peripheral 2

DMA
Ready

Peripheral 3

DMA
Ready

Ready

DMA X-Bus

CPU       DMA

CPU       DMA CPU       DMA

Peripheral Indirect Address

D
M

A
C

on
tro

l

DMA Controller

DMA
Channels

CPU Peripheral X-Bus

IRQ to DMA 
and Interrupt 
Controller 
Modules

SRAM X Bus

IRQ to DMA 
and Interrupt 

Controller 
Modules

IRQ to DMA 
and Interrupt 

Controller 
Modules

0 1 2 3 4 5 6 7

Note: CPU and DMA address buses are not shown for clarity.
DS70215C-page 38-12 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.4  DMA DATA TRANSFER
Figure 38-3 illustrates data transfer between a peripheral and DPSRAM. 

A. In Figure 38-3, DMA Channel 5 is configured to operate with DMA-ready Peripheral 1.
B. When data is ready to be transferred from the peripheral, a DMA request is issued by the 

peripheral. The DMA request is arbitrated with any other coincident requests. If this 
channel has the highest priority, the transfer is completed during the next cycle. 
Otherwise, the DMA request remains pending until it becomes the highest priority.

C. The DMA channel executes a data read from the designated peripheral address, which is 
user application defined within the active channel. 

D. The DMA channel writes the data to the designated DPSRAM address.

This example represents Register Indirect mode, where the DPSRAM address is designated 
within the DMA channel through the DMAxSTA or DMAxSTB registers. In Peripheral Indirect 
Addressing mode, the DPSRAM address is derived from the peripheral, not the active channel. 
For more information, refer to 38.6.6 “Peripheral Indirect Addressing Mode”.

The entire DMA read and write transfer operation is accomplished uninterrupted in a single 
instruction cycle. During this entire process, DMA request remains latched in the DMA channel 
until the data transfer is complete.

The DMA channel concurrently monitors the DMA Channel x Transfer Counter 
register (DMAxCNT). When the transfer count reaches a user application specified limit, data 
transfer is considered complete and a CPU interrupt is asserted to alert the CPU to process the 
newly received data.

During the data transfer cycle, the DMA controller also continues to arbitrate pending or 
subsequent DMA requests to maximize throughput.
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-13



dsPIC33F/PIC24H Family Reference Manual
Figure 38-3: DMA Data Transfer Example

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

DMA Data Space Bus

CPU       DMA

D
M

A
C

on
tro

l

DMA Controller

CPU Peripheral Data Space Bus

SRAM X Bus

DM
A 

Ch
 5

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

CPU       DMA
D

M
A

C
on

tro
l

DMA Controller

SRAM X Bus

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

CPU       DMA

D
M

A
C

on
tro

l

DMA Controller

SRAM X Bus

D
M

A 
C

h 
5

CPU

SRAM DPSRAM Peripheral 1

DMA

PORT 2PORT 1

Ready

CPU       DMA

D
M

A
C

on
tro

l

DMA Controller

SRAM X Bus

D
M

A 
C

h 
5

Peripheral 1 configured for DMA Channel 5

B

A

C

D

Peripheral has data to transfer to DMA Channel 5

DMA Channel 5 reads data from Peripheral 1

DMA Channel 5 writes data to DPSRAM

DATA

DATA

DATA

DMA Request

D
M

A 
C

h 
5

Peripheral Address

Data Read

Data Write (DMA DS Bus)

DPSRAM Address
DS70215C-page 38-14 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.5  DMA SET UP
For DMA data transfer to function properly, the DMA channels and peripherals must be 
appropriately configured:

• DMA channels must be associated with peripherals (see 38.5.1 “DMA Channel to 
Peripheral Association Setup”)

• Peripherals must be properly configured (see 38.5.2 “Peripheral Configuration Setup”)
• DPSRAM data start addresses must be initialized (see 38.5.3 “Memory Address 

Initialization”)
• Initializing DMA transfer count must be initialized (see 38.5.4 “DMA Transfer Count 

Setup”)
• Appropriate addressing and operating modes must be selected (see 38.6 “DMA 

Operating Modes”)

38.5.1 DMA Channel to Peripheral Association Setup
The DMA Channel needs to know which peripheral target address to read from or write to, and 
when to perform the same. This information is configured in the DMA Channel x Peripheral 
Address register (DMAxPAD) and DMA Channel x IRQ Select register (DMAxREQ), respectively.

Table 38-1 lists the values to be written to these registers to associate a particular peripheral with 
a given DMA channel.

Table 38-1: DMA Channel to Peripheral Associations

Peripheral to DMA Association DMAxREQ Register
IRQSEL<6:0> Bits

DMAxPAD Register 
Values to Read from 

Peripheral

DMAxPAD Register 
Values to Write to 

Peripheral

External Interrupt 0 (INT0) 0000000 — —
Input Capture 1 (IC1) 0000001 0x0140 (IC1BUF) —
Input Capture 2 (IC2) 0000101 0x0144 (IC2BUF) —
Output Compare 1 Data – OC1 0000010 — 0x0182 (OC1R)
Output Compare 1 Secondary Data (OC1) 0000010 — 0x0180 (OC1RS)
Output Compare 2 Data (OC2) 0000110 — 0x0188 (OC2R)
Output Compare 2 Secondary Data (OC2) 0000110 — 0x0186 (OC2RS)
Timer2 (TMR2) 0000111 — —
Timer3 (TMR3) 0001000 — —
Transfer Done (SPI1) 0001010 0x0248 (SPI1BUF) 0x0248 (SPI1BUF)
Transfer Done (SPI2) 0100001 0x0268 (SPI2BUF) 0x0268 (SPI2BUF)
UART1 Receiver (UART1RX) 0001011 0x0226 (U1RXREG) —
UART1 Transmitter (UART1TX) 0001100 — 0x0224 (U1TXREG)
UART2 Receiver (UART2RX) 0011110 0x0236 (U2RXREG) —
UART2 Transmitter (UART2TX) 0011111 — 0x0234 (U2TXREG)
RX Data Ready (ECAN1) 0100010 0x0440 (C1RXD) —
TX Data Request (ECAN1) 1000110 — 0x0442 (C1TXD)
CODEC Transfer Done (DCI) 0111100 0x0290 (RXBUF0) 0x0298 (TXBUF0)
ADC1 Convert Done (ADC1) 0001101 0x0300 (ADC1BUF0) —
PMP Master Data Transfer (PMP) 0101101 0x0608 (PMDIN1) 0x0608 (PMDIN1)
DAC1 Right Data Transfer (DAC1) 1001110 — 0x03F6 (DAC1RDAT)
DAC1 Left Data Transfer (DAC1) 1001111 — 0x03F8 (DAC1LDAT)
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-15



dsPIC33F/PIC24H Family Reference Manual
If two DMA channels select the same peripheral as the source of their DMA request, both 
channels receive the DMA request simultaneously. However, the highest priority channel 
executes its transfer first, leaving the other channel pending. This situation is common where a 
single DMA request is used to move data both to and from a peripheral (for example, SPI). Two 
DMA channels are used. One DMA channel is allocated for peripheral reads, and the other DMA 
channel is allocated for peripheral data writes. Both the DMA channels use the same DMA 
request.

If the DMAxPAD register is initialized to a value not listed in Table 38-1, DMA channel writes to 
this peripheral address will be ignored. DMA channel reads from this address will result in a read 
of ‘0’.

38.5.2 Peripheral Configuration Setup
The second step in the DMA setup process is to configure DMA-ready peripherals for DMA 
operation. Table 38-2 outlines the configuration requirements for DMA-ready peripherals.

Table 38-2: Configuration Considerations for DMA-ready Peripherals 

 DMA-ready Peripheral Configuration Considerations

ECAN™ Module ECAN buffers are allocated in the DMA RAM. The overall size of the CAN buffer area 
and FIFO in the DMA RAM is specified by the user, and must be defined through the 
DMA Buffer Size bits (DMABS<2:0>) in the ECAN FIFO Control register 
(C1FCTRL<15:13>). Sample code is shown in Example 38-9.

DCI The DCI must be configured to generate an interrupt for every buffered data word by 
setting the Buffer Length Control bits (BLEN<1:0>) to ‘00’ in the DCI Control 2 register 
(DCICON2<11:10>). The same DCI interrupt must be used as the request for two 
DMA channels to support RX and TX data transfers.
If the DCI module is operating as Master and only receiving data, the second DMA 
channel must be used to send dummy transmit data. Sample code is shown in 
Example 38-11.

10-bit/12-bit ADC When the ADC is used with the DMA in Peripheral Indirect mode, the increment rate 
for the DMA Addresses bits (SMPI<3:0>) in the ADCx Control 2 register 
(ADCxCON2<5:2>), and the Number of DMA Buffer Locations per Analog Input bits 
(DMABL<2:0>) in the ADCx Control 4 register (ADCxCON4<2:0>) must be set 
properly. Also, the DMA Buffer Build mode bit (ADDMABM) in the ADCx Control 1 
register (ADxCON1<12>) must be properly set for ADC address generation. For more 
information, refer to 38.6.6.1 “ADC Support for DMA Address Generation”. 
Sample code is shown in Example 38-5 and Example 38-7. 

SPI If the SPI module is operating as master and only receiving data, the second DMA 
channel must be allocated and used to send dummy transmit data. Alternatively, a sin-
gle DMA channel can be used in Null Data Write mode. For more information, refer to 
38.6.11 “Null Data Write Mode”. Sample code is shown in Example 38-12.

UART The UART must be configured to generate interrupts for every character received or 
transmitted. For the UART receiver to generate an RX interrupt for each character 
received, the Receive Interrupt Mode Selection bits (URXISEL<1:0>) must be set to 
‘00’ or ‘01’ in the Status and Control  
register (UxSTA<7:6>). 
For the UART transmitter to generate a TX interrupt for each character transmitted, 
the Transmission Interrupt Mode Selection bits, UTXISEL0 and UTXISEL1, must be 
set to ‘0’ in the UxSTA register. Sample code is shown in Example 38-10.

Input Capture The Input Capture module must be configured to generate an interrupt for each cap-
ture event by setting the Number of Captures per Interrupt bits (ICI<1:0>) to ‘00’ in the 
Input Capture Control register (ICxCON<6:5>). Sample code is shown in 
Example 38-4.

Output Compare The Output Compare module requires no special configuration to work with DMA. 
Typically, however, the timer is used to provide the DMA request, and it needs to be 
properly configured. Sample code is shown in Example 38-3.
DS70215C-page 38-16 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
An error condition within a DMA enabled peripheral generally sets a status flag and generates 
an interrupt (if interrupts are enabled by the user application). When a peripheral is serviced by 
the CPU, the data interrupt handler is required to check for error flags and, if necessary, take the 
appropriate action. However, when a peripheral is serviced by the DMA channel, the DMA can 
only respond to data transfer requests and it is not aware of any subsequent error conditions. All 
error conditions in DMA compatible peripherals must have an associated interrupt enabled and 
be serviced by the user-defined Interrupt Service Routine (ISR), if such an interrupt is present in 
the peripheral.

External Interrupt and Timers Only External Interrupt 0, and Timer2 and Timer3 can be selected for DMA request. 
Although these peripherals do not support DMA transfer themselves, they can be 
used to trigger DMA transfers for other DMA-supported peripherals. For example, 
Timer2 can trigger DMA transactions for the Output Compare peripheral in PWM 
mode. Sample code is shown in Example 38-3.

PMP The PMP module must be configured as a master by setting the Parallel Port Mode 
Select bits (MODE<1:0>) to ‘10’ or ‘11’ in the Parallel Port Mode register 
(PMMODE<9:8>). Also, interrupts must be generated after each data transfer by 
setting the Interrupt Request Mode bits, IRQM<1:0> (PMMODE<14:13>) to ‘01’. For 
more information, refer to Section 35. “Parallel Master Port (PMP)” (DS70299).

DAC The DAC module must be configured to generate an interrupt when the DAC FIFO is 
empty. This is achieved by setting the Right Channel Type Interrupt bit (RITYPE) to 
‘1’, and/or setting the Left Channel Type Interrupt bit (LITYPE) to ‘1’ in the DAC1 
Status and Control register (DAC1STAT<10>). For code examples, refer to Section 
33. “Digital-to-Analog Converter (DAC)” (DS70298).

Table 38-2: Configuration Considerations for DMA-ready Peripherals (Continued)

 DMA-ready Peripheral Configuration Considerations
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-17



dsPIC33F/PIC24H Family Reference Manual
38.5.3 Memory Address Initialization
The third DMA setup requirement is to allocate memory buffers within a specific memory area for 
DMA access. The location and size of this memory area depends on the dsPIC33F/PIC24H
device. Refer to the “Memory Organization” chapter in the specific device data sheet for more 
information. Figure 38-4 illustrates a DMA memory area of 2 KB for dsPIC33F/PIC24H devices 
with 16 Kbytes of RAM.

Figure 38-4: Data Memory Map for dsPIC33F/PIC24H Devices with 16 Kbytes RAM 

To operate properly, the DMA needs to know the DPSRAM address to read from or write to as 
an offset from the beginning of the DMA memory. This information is configured in the DMAxSTA
and DMAxSTB register. Figure 38-5 illustrates an example of how the primary and secondary 
DMA Channel 4 buffers are set up on the dsPIC33FJ128MC804 device at address 0x4000 and 
0x4010, respectively.

0x0000

0x07FE

0x27FE

0xFFFE

LSb
Address16 bits

LSbMSb

MSb
Address

0x0001

0x07FF

0x27FF

0xFFFF

Optionally
Mapped
into Program
Memory

0x47FF 0x47FE

0x0801 0x0800

0x2801 0x2800

Near
Data

 

2 Kbyte
SFR Space

16 Kbyte
SRAM Space

8 Kbyte

Space

0x8001 0x8000

0x48000x4801

 

0x3FFE
0x4000

0x3FFF
0x4001

0x1FFE0x1FFF

SFR Space

X Data RAM (X)

X Data
Unimplemented (X)

DMA RAM

Y Data RAM (Y)
DS70215C-page 38-18 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Figure 38-5: Primary and Secondary Buffer Allocation in DMA Memory

In Figure 38-5, you must be familiar with the memory layout for the device to hard code this 
information into the application. Also, you must use pointer arithmetic to access these buffers 
after the DMA transfer is complete. As a result, this implementation is difficult to port from one 
processor to another.

The MPLAB® C30 compiler simplifies DMA buffer initialization and access by providing built-in 
C language primitives for that purpose. For example, the code in Figure 38-6 allocates two 
buffers in the DMA memory and initializes the DMA channel to point to them.

Figure 38-6: Primary and Secondary DMA Buffer Allocation with MPLAB® IDE

If the DMAxSTA (and/or DMAxSTB) register is initialized to a value that will result in the DMA 
channel reading or writing RAM addresses outside of DMA RAM space, DMA channel writes to 
this memory address are ignored. DMA channel reads from this memory address result in a read 
of ‘0’.

Note: MPLAB LINK30 linker allocates the primary and secondary buffers in reverse order 
starting at the bottom of the DMA memory space.

Primary
Buffer

Secondary
Buffer

0x4000

0x4010

D
M

A
 R

A
M

&_DMA_BASE (defined in p33FJ128MC804.gld)

&_DMA_BASE+DMA4STA (0x4000 + 0x0000 = 0x4000)

&_DMA_BASE+DMA4STA (0x4000 + 0x0010 = 0x4010)

Code Example:
DMA4STA = 0x0000;

DMA4STB = 0x0010;

Buffer B
(Secondary)

Buffer A
(Primary)

0x47E0

0x4800

D
M

A 
R

A
M

0x47EE
0x47F0

0x47FE

&_DMA_BASE

Code Example:
unsigned int BufferA[8] __attribute__((space(dma)));

unsigned int BufferB[8] __attribute__((space(dma)));

DMA0STA = __builtin_dmaoffset(BufferA);

DMA0STB = __builtin_dmaoffset(BufferB);
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-19



dsPIC33F/PIC24H Family Reference Manual
38.5.4 DMA Transfer Count Setup
In the fourth step of the DMA setup process, each DMA channel must be programmed to 
service N + 1 number of requests before the data block transfer is considered complete. The 
value ‘N’ is specified by programming the DMA Channel x Transfer Count register (DMAxCNT).
That is, a DMAxCNT value of ‘0’ will transfer one element. 

The value of the DMAxCNT register is independent of the transfer data size (byte or word), which 
is specified in the Data Transfer Size bit, SIZE (DMAxCON<14>).

If the DMAxCNT register is initialized to a value that will result in the DMA channel reading or 
writing RAM addresses outside of DMA RAM space, DMA channel writes to this memory address 
are ignored. DMA channel reads from this memory address result in a read of ‘0’.

38.5.5 Operating Mode Setup
The fifth and final DMA setup step is to specify the mode of operation for each DMA channel by 
configuring the DMAxCON register. For specific setup information, refer to 38.6 “DMA 
Operating Modes”.
DS70215C-page 38-20 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.6  DMA OPERATING MODES
The DMA channel supports these modes of operation:

• Word or byte data transfer
• Transfer direction (peripheral to DPSRAM, or DPSRAM to peripheral)
• Full or half transfer interrupts to CPU
• Post-Increment or static DPSRAM addressing
• Peripheral Indirect Addressing
• One-shot or continuous block transfers
• Auto-switch between two start addresses offsets (DMAxSTA or DMAxSTB) after each 

transfer complete (Ping-Pong mode)
• Null Data Write mode

Additionally, DMA supports a manual mode, which forces a single DMA transfer. 

38.6.1 Word or Byte Data Transfer
Each DMA channel can be configured to transfer data by word or byte. Word data can only be 
moved to and from aligned (even) addresses. Conversely, Byte data can be moved to or from 
any (legal) address.

If the SIZE bit (DMAxCON<14>) is clear, word-sized data is transferred. If Register Indirect with 
Post-Increment Addressing mode is enabled, the address is post-incremented by 2 after every 
word transfer (see 38.6.5 “Register Indirect without Post-Increment Addressing Mode”).

If the SIZE bit (DMAxCON<14>) is set, byte-sized data is transferred. If Register Indirect with 
Post-Increment Addressing mode is enabled, the address is incremented by 1 after every byte 
transfer.

38.6.2 Transfer Direction
Each DMA channel can be configured to transfer data from a peripheral to the DPSRAM or from 
the DPSRAM to a peripheral.

If the Transfer Direction bit (source/destination bus select), DIR (DMAxCON<13>) is clear, data 
is read from the peripheral (using the peripheral address as provided by DMAxPAD), and the 
destination write is directed to the DPSRAM DMA memory address offset (using DMAxSTA or 
DMAxSTB).

If the DIR bit (DMAxCON<13>) is set, data is read from the DPSRAM DMA memory address 
offset (using DMAxSTA or DMAxSTB), and the destination write is directed to the peripheral 
(using the peripheral address, as provided by DMAxPAD).

Once configured, each channel is a unidirectional data conduit. That is, should a peripheral 
require read and write data using the DMA controller, two channels must be assigned – one for 
read and one for write.

38.6.3 Full or Half Block Transfer Interrupts
Each DMA channel provides an interrupt to the interrupt controller when block data transfer is 
complete or half complete. This mode is designated by clearing or setting the Block Transfer 
Interrupt Select bit, HALF (DMAxCON<12>): 

• HALF = 0 (initiate interrupt when all of the data has been moved)
• HALF = 1 (initiate interrupt when half of the data has been moved)

When DMA Continuous mode is used, the CPU must be able to process the incoming or outgoing 
data at least as fast as the DMA is moving it. The half transfer interrupt helps mitigate this 
problem by generating an interrupt when only half of the data has been transferred. For example, 
if an ADC is being continuously read by the DMA controller, the half transfer interrupt allows the 
CPU to process the buffer before it becomes completely full. Provided it never gets ahead of the 
DMA writes, this scheme can be used to relax the CPU response time requirements. Figure 38-7 
illustrates this process.
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-21



dsPIC33F/PIC24H Family Reference Manual
Figure 38-7: Half Block Transfer Mode

In all modes, when the HALF bit (DMAxCON<12>) is set, the DMA issues an interrupt only 
when the first half of Buffer A and/or B is transferred. No interrupt is issued when Buffer A 
and/or B is completely transferred. In other words, interrupts are only issued when DMA 
completes (DMAxCNT + 1)/2 transfers. If (DMAxCNT + 1) is equal to an odd number, 
interrupts are issued after (DMAxCNT + 2)/2 transfers.

For example, if DMA3 is configured for One-Shot, Ping-Pong buffers (MODE<1:0> = 11), and 
DMA3CNT = 7, two DMA3 interrupts are issued. One DMA3 interrupt is issued after transferring 
four elements from Buffer A, and the other DMA3 interrupt is issued after transferring four 
elements from Buffer B. For more information, refer to 38.6.7 “One-Shot Mode” and 
38.6.9 “Ping-Pong Mode”.

Even though the DMA channel issues an interrupt on either half or full block transfers, the user 
application can “trick” the DMA channel into issuing an interrupt on half and full block transfers 
by toggling the value of the HALF bit (DMAxCON<12>) during each DMA interrupt. For example, 
if the DMA channel is set up with the HALF bit (DMAxCON<12>) set to ‘1’, an interrupt is issued 
after each half block transfer. If the user application resets the HALF bit (DMAxCON<12>) to ‘0’ 
while the interrupt is being serviced, the DMA issues another interrupt when the full block transfer 
is complete.

To enable these interrupts, the corresponding DMA Interrupt Enable bit (DMAxIE) must be set in 
the Interrupt Enable Control (IECx) register in the Interrupt Controller module, as shown in 
Table 38-3.

Example 38-1 shows how DMA channel 0 interrupt is enabled.

Example 38-1: Code to Enable DMA Channel 0 Interrupt

Table 38-3: Interrupt Controller Settings for Enabling/Disabling DMA Interrupts

DMA 
Channel

Interrupt Controller 
Register Name and 

Bit Number

Corresponding Register 
Bit Name

C Structure 
Access Code

0 IEC0<4> DMA0IE IEC0bits.DMA0IE 
1 IEC0<14> DMA1IE IEC1bits.DMA1IE 

2 IEC1<8> DMA2IE IEC1bits.DMA2IE 

3 IEC2<4> DMA3IE IEC2bits.DMA3IE 
4 IEC2<14> DMA4IE IEC2bits.DMA4IE 

5 IEC3<13> DMA5IE IEC3bits.DMA5IE 

6 IEC4<4> DMA6IE IEC4bits.DMA6IE 

7 IEC4<5> DAM7IE IEC4bits.DMA7IE

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

COUNT = DMAxCNT+1
2

&_DMA_BASE + DMAxSTA

Half Transfer IRQ 
to CPU

COUNT = 0

IEC0bits.DMA0IE = 1;
DS70215C-page 38-22 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Each DMA channel transfer interrupt sets a corresponding status flag in the interrupt controller, 
which triggers the ISR. The user application must then clear that status flag to prevent the 
transfer-complete ISR from re-executing. 

Table 38-4 shows the Interrupt Flag Status (IFSx) register and the corresponding bit name, 
DMAxIF, in the Interrupt Controller module. It also shows the C Structure Access Code that clears 
the flag.

As an example, assume DMA channel 0 interrupt is enabled, DMA channel 0 transfer has 
finished, and the associated interrupt has been issued to the interrupt controller. The following 
code must be present in the DMA channel 0 ISR to clear the status flag and to prevent a pending 
interrupt. Example 38-2 shows how DMA channel 0 interrupt is cleared.

Example 38-2: Code to Clear DMA Channel 0 Interrupt

Table 38-4: Interrupt Controller Settings for Clearing DMA Interrupt Status Flags

DMA 
Channel

Interrupt Controller 
Register Name and 

Bit Number

Corresponding Register 
Bit Name

C Structure 
Access Code

0 IFS0<4> DMA0IF IFS0bits.DMA0IE 

1 IFS0<14> DMA1IF IFS0bits.DMA1IE 

2 IFS1<8> DMA2IF IFS1bits.DMA2IE 
3 IFS2<4> DMA3IF IFS2bits.DMA3IE 

4 IFS2<14> DMA4IF IFS2bits.DMA4IE 

5 IFS3<13> DMA5IF IFS3bits.DMA5IE 
6 IFS4<4> DMA6IF IFS4bits.DMA6IE 

7 IFS4<5> DMA7IF IFS4bits.DMA7IE 

void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{

. . . 

IFS0bits.DMA0IF = 0;
}

© 2007-2012 Microchip Technology Inc. DS70215C-page 38-23



dsPIC33F/PIC24H Family Reference Manual
38.6.4 Register Indirect with Post-Increment Addressing Mode
Register Indirect with Post-Increment Addressing mode is used to move blocks of data by 
incrementing the DPSRAM address after each transfer.

The DMA channel defaults to this mode after the DMA controller is reset. This mode is selected 
by programming the DMA Channel Addressing Mode Select bits,
AMODE<1:0> (DMAxCON<5:4>) to ‘00’. In this mode, the DMAxSTA or DMAxSTB register 
provides the starting address of DPSRAM buffer. 

The user application determines the latest DPSRAM transfer address offset by reading the 
DPSRAM Start Address Offset register. However, the contents of this register are not modified 
by the DMA controller. 

Figure 38-8 illustrates data transfer in this mode. Example 38-3 demonstrates the code for 
Register Indirect Post-Increment mode.

Figure 38-8: Data Transfer with Register Indirect with Post-Increment Addressing

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 1
Data 2
Data 3

Peripheral 
1

DMA
Channel 3

DMA Channel 3, First TransferA

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 1
Data 2
Data 3

Peripheral 
1

DMA
Channel 3

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 4

Data 1
Data 2
Data 3

Peripheral 
1

DMA
Channel 3

DMA Channel 3, Second TransferB

DMA Channel 3, Third TransferC

Transfer 1

Transfer 2

Transfer 3
DS70215C-page 38-24 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Example 38-3: Code for Output Compare and DMA with Register Indirect 
Post-Increment Mode 

38.6.5 Register Indirect without Post-Increment Addressing Mode
Register Indirect without Post-Increment Addressing mode is used to move blocks of data 
without incrementing the starting address of the data buffer after each transfer. In this mode, the
DMAxSTA or DMAxSTB register provides offset to the starting address of the DPSRAM buffer. 
When the DMA data transfer takes place, the DPSRAM Address does not increment to the next 
location. So, the next DMA data transfer is initiated to the same DPSRAM address. This mode 
is selected by programming the AMODE<1:0> bits (DMAxCON<5:4>) to ‘01’.

If the addressing mode is changed to Register Indirect without Post-Increment Addressing mode 
while the DMA channel is active (that is, after some DMA transfers have occurred), the DMA 
DPSRAM address will point to the current DPSRAM buffer location (that is, not the contents of 
the DMAxSTA or DMAxSTB, which by then could differ from the current DPSRAM buffer 
location). Figure 38-9 illustrates data transfer from the peripheral to the DMA DPSRAM, 
contrasting the use with and without post-increment addressing. Example 38-4 demonstrates the 
code for Register Indirect without Post-Increment Addressing.

Set up Output Compare 1 module for PWM mode:
OC1CON = 0; // Reset OC module
OC1R = 0x60; // Initialize PWM Duty Cycle
OC1RS = 0x60; // Initialize PWM Duty Cycle Buffer

OC1CONbits.OCM = 6; // Configure OC for the PWM mode

Set up DMA Channel 3 for in Post Increment mode with Timer2 Request Source:
unsigned int BufferA[32] __attribute__((space(dma)));
/* Insert code here to initialize BufferA with desired Duty Cycle values */

DMA3CONbits.AMODE = 0; // Configure DMA for Register indirect mode 
// with post-increment

DMA3CONbits.MODE = 0; // Configure DMA for Continuous mode
DMA3CONbits.DIR   = 1; // RAM-to-Peripheral data transfers
DMA3PAD = (volatile unsigned int)&OC1RS; // Point DMA to OC1RS
DMA3CNT = 31; // 32 DMA request
DMA3REQ = 7; // Select Timer2 as DMA Request source

DMA3STA = __builtin_dmaoffset(BufferA);

IFS2bits.DMA3IF = 0; // Clear the DMA interrupt flag bit
IEC2bits.DMA3IE = 1; // Set the DMA interrupt enable bit

DMA3CONbits.CHEN = 1; // Enable DMA

Set up Timer2 for Output Compare PWM mode:
PR2 = 0xBF; // Initialize PWM period
T2CONbits.TON = 1; // Start Timer2

Set up DMA Channel 3 Interrupt Handler:
void __attribute__((interrupt, no_auto_psv)) _DMA3Interrupt(void)
{

/* Update BufferA with new Duty Cycle values if desired here*/

IFS2bits.DMA3IF = 0; //Clear the DMA3 Interrupt Flag
}

© 2007-2012 Microchip Technology Inc. DS70215C-page 38-25



dsPIC33F/PIC24H Family Reference Manual
Figure 38-9: Contrast of Data Transfer with and without Post-Increment Addressing

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0

Peripheral 
1

DMA
Channel 0

DMA Channel 0, First Transfer (with Post-Increment Addressing)A

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1
Data 2

Peripheral 
1

DMA
Channel 0

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1

Peripheral 
1

DMA
Channel 0

DMA Channel 0, Second Transfer (with Post-Increment Addressing)B

DMA Channel 0, Third Transfer (mode changed to “without Post-Increment” Addressing)C

&_DMA_BASE

&_DMA_BASE + DMA3STA + 0
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1
Data 3

Peripheral 
1

DMA
Channel 0

DMA Channel 0, Fourth Transfer (without Post-Increment Addressing)C

&_DMA_BASE + DMA3STA + 3

&_DMA_BASE + DMA3STA + 3

&_DMA_BASE + DMA3STA + 3

&_DMA_BASE + DMA3STA + 3

Transfer 1

Transfer 2

Transfer 3

Transfer 4
DS70215C-page 38-26 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Example 38-4: Code for Input Capture and DMA with Register Indirect without 
Post-Increment Addressing

38.6.6 Peripheral Indirect Addressing Mode
Peripheral Indirect Addressing mode is a special addressing mode where the peripheral, not the 
DMA channel, provides the variable part of the DPSRAM address. That is, the peripheral generates 
the Least Significant bits (LSbs) of the DPSRAM address, while the DMA channel provides the 
fixed buffer base address. However, the DMA channel continues to coordinate the actual data 
transfer, keeping track of the transfer count, and generating the corresponding CPU interrupts. 

Peripheral Indirect Addressing mode can operate bidirectionally, depending upon the peripheral 
need, so the DMA channel still needs to be configured appropriately to support target peripheral 
reads or writes. 

Peripheral Indirect Addressing mode is selected by programming the AMODE<1:0> bits 
(DMAxCON<5:4>) to ‘1x’. 

The DMA capability in Peripheral Indirect Addressing mode can be specifically tailored to meet 
the needs of each peripheral that supports it. The peripheral defines the address sequence for 
accessing the data within the DPSRAM, allowing it, for example, to sort incoming ADC data into 
multiple buffers, relieving the CPU of the task.

If Peripheral Indirect Addressing mode is supported by a peripheral, a DMA request interrupt 
from that peripheral is accompanied by an address that is presented to the DMA channel. If the 
DMA channel that responds to the request is also enabled for Peripheral Indirect Addressing, it 
will logically OR the buffer base address with the zero extended incoming Peripheral Indirect 
Address to create the actual DPSRAM offset address, as illustrated in Figure 38-10.

Set up Input Capture 1 module for DMA operation:
IC1CON = 0; // Reset IC module
IC1CONbits.ICTMR = 1; // Select Timer2 contents for capture
IC1CONbits.ICM   = 2; // Capture every falling edge
IC1CONbits.ICI   = 0; // Generate DMA request on every capture event

Set up Timer2 to be used by Input Capture module:
PR2 = 0xBF; // Initialize count value
T2CONbits.TON = 1; // Start timer

Set up DMA Channel 0 for no Post Increment mode:
unsigned int CaptureValue __attribute__((space(dma)));

DMA0CONbits.AMODE = 1; // Configure DMA for Register indirect 
// without post-increment

DMA0CONbits.MODE = 0; // Configure DMA for Continuous mode
DMA0PAD = (volatile unsigned int)&IC1BUF; // Point DMA to IC1BUF
DMA0CNT = 0; // Interrupt after each transfer
DMA0REQ = 1; // Select Input Capture module as DMA Request source

DMA3STA = __builtin_dmaoffset(&CaptureValue);

IFS0bits.DMA0IF = 0; // Clear the DMA interrupt flag bit
IEC0bits.DMA0IE = 1; // Set the DMA interrupt enable bit

DMA0CONbits.CHEN = 1; // Enable DMA

Set up DMA Channel 0 Interrupt Handler:
void __attribute__((interrupt, no_auto_psv)) _DMA3Interrupt(void)
{

/* Process CaptureValue variable here*/

IFS0bits.DMA0IF = 0; //Clear the DMA3 Interrupt Flag
}

© 2007-2012 Microchip Technology Inc. DS70215C-page 38-27



dsPIC33F/PIC24H Family Reference Manual
Figure 38-10: Address Offset Generation in Peripheral Indirect Addressing Mode

The peripheral determines how many Least Significant address bits it will control. The application 
program must select a base address for the buffer in DPSRAM and ensure that the 
corresponding number of LSbs of that address offset are zero. As with other modes, when the 
DMAxSTA or DMAxSTB register is read, it returns a value of the latest DPSRAM transfer address 
offset, which includes the address offset calculation described above. If the DMA channel is not 
configured for Peripheral Indirect Addressing, the incoming address is ignored and the data 
transfer occurs as normal.

Peripheral Indirect Addressing mode is compatible with all other operating modes, and is 
currently supported by the ADC and ECAN modules.

38.6.6.1 ADC SUPPORT FOR DMA ADDRESS GENERATION

In Peripheral Indirect Addressing mode, the peripheral defines the addressing sequence, which 
is more tailored to peripheral functionality. For example, if the ADC is configured to continuously 
convert inputs 0 through 3 in sequence (0, 1, 2, 3, 0, 1, and so on), and it is associated with a 
DMA channel that is configured for Register Indirect Addressing with Post-Increment, DMA 
transfer moves this data into a sequential buffer as illustrated in Figure 38-11. Example 38-5 
illustrates the code for this configuration.

Figure 38-11: Data Transfer from ADC with Register Indirect Addressing

Offset Address
(from DMAxSTA or DMAxSTB)

Peripheral Indirect Address
(from peripheral)

PIA Address0. . . . 0

0. . . . 0Offset Address

DPSRAM Address Offset

Application Responsibility:
Set to ‘0’

Zero Extend

&_DMA_BASE

&_DMA_BASE+DMA5STA+PIA (for Transfer 1)

ADC
DMA

Channel
5

AN0
AN1
AN2

AN3

Data

DMA
Request

AN0 Sample 1
AN1 Sample 1

AN2 Sample 1

AN0 Sample 2

AN0 Sample 3

AN2 Sample 2
AN1 Sample 2

AN1 Sample 3

AN2 Sample 3

AN3 Sample 1

AN3 Sample 2

AN3 Sample 3

Transfer 1
Transfer 2

Transfer 12

Transfer 3
DS70215C-page 38-28 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing
Set up ADC1 for channel 0-3 sampling:
AD1CON1bits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
AD1CON1bits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
AD1CON1bits.ASAM = 1; // Sampling begins immediately after conversion
AD1CON1bits.AD12B = 0; // 10-bit ADC operation
AD1CON1bits.SIMSAM = 0; // Samples individual channels sequentially

AD1CON2bits.BUFM = 0;
AD1CON2bits.CSCNA = 1; // Scan CH0+ Input Selections during Sample A bit
AD1CON2bits.CHPS = 0; // Converts CH0

AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock
AD1CON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHS0: A/D Input Select Register
AD1CHS0bits.CH0SA = 0; // MUXA +ve input selection (AIN0) for CH0
AD1CHS0bits.CH0NA = 0; // MUXA -ve input selection (Vref-) for CH0

//AD1CHS123: A/D Input Select Register
AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AIN0) for CH1
AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CH1

//AD1CSSH/AD1CSSL: A/D Input Scan Selection Register
AD1CSSH = 0x0000;
AD1CSSL = 0x000F; // Scan AIN0, AIN1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:
TMR3 = 0x0000;
PR3 = 4999; // Trigger ADC1 every 125usec @ 40 MIPS
IFS0bits.T3IF = 0; // Clear Timer3 interrupt
IEC0bits.T3IE = 0; // Disable Timer3 interrupt

T3CONbits.TON = 1; //Start Timer3

Set up DMA Channel 5 for Register Indirect with Post-Increment Addressing:
unsigned int BufferA[32] __attribute__((space(dma)));
unsigned int BufferB[32] __attribute__((space(dma)));

DMA5CONbits.AMODE = 0; // Configure DMA for Register indirect mode 
// with post-increment

DMA5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
DMA5PAD = (volatile unsigned int)&ADC1BUF0; // Point DMA to ADC1BUF0
DMA5CNT = 31; // 32 DMA request
DMA5REQ = 13; // Select ADC1 as DMA Request source

DMA5STA = __builtin_dmaoffset(BufferA);
DMA5STB = __builtin_dmaoffset(BufferB);

IFS3bits.DMA5IF = 0; //Clear the DMA interrupt flag bit
IEC3bits.DMA5IE = 1; //Set the DMA interrupt enable bit

DMA5CONbits.CHEN=1; // Enable DMA

Set up DMA channel 5 Interrupt handler:
unsigned int DmaBuffer = 0;
void __attribute__((interrupt, no_auto_psv)) _DMA5Interrupt(void)
{

// Switch between Primary and Secondary Ping-Pong buffers
if(DmaBuffer == 0)
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-29



dsPIC33F/PIC24H Family Reference Manual
Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing 
(Continued)

A typical algorithm would operate on a per ADC data channel basis, requiring it to either sort 
transferred data or index it by jumping unwanted data. Either of these methods require more 
code and consume more execution time. ADC Peripheral Indirect Addressing mode defines a 
special addressing technique where data for each ADC channel is placed into its own buffer. For 
Example 38-5, if the DMA channel is configured for Peripheral Indirect Addressing mode, the 
DMA transfer moves ADC data into separate buffers, as illustrated in Figure 38-12.

Figure 38-12: Data Transfer from ADC with Peripheral Indirect Addressing

To enable this kind of ADC addressing, the DMA Buffer Build Mode bit, ADDMABM (ADxCON1), 
must be cleared. If the ADDMABM bit (ADxCON1<12>) is set, the ADC generates addresses in 
the order of conversion (same as DMA Register Indirect Addressing with Post-Increment mode).

{
ProcessADCSamples(BufferA);

}
else
{

ProcessADCSamples(BufferB);
}

DmaBuffer ^= 1;

IFS3bits.DMA5IF = 0; //Clear the DMA5 Interrupt Flag
}

Set up ADC1 for DMA operation:
AD1CON1bits.ADDMABM = 0; // Don't Care: ADC address generation is

// ignored by DMA
AD1CON2bits.SMPI    = 3; // Don't Care
AD1CON4bits.DMABL   = 3; // Don't Care
        
IFS0bits.AD1IF      = 0; // Clear the A/D interrupt flag bit
IEC0bits.AD1IE      = 0; // Do Not Enable A/D interrupt 
AD1CON1bits.ADON    = 1; // Turn on the A/D converter

&_DMA_BASE

&_DMA_BASE+DMA5STA+PIA (for Transfer 1)

ADC
DMA

Channel
5

AN0
AN1
AN2
AN3

Data

DMA
Request

AN0 Sample 1
AN0 Sample 2

AN0 Sample 3

AN1 Sample 1

AN2 Sample 1

AN1 Sample 3
AN1 Sample 2

AN2 Sample 2

AN2 Sample 3

AN3 Sample 1

AN3 Sample 2
AN3 Sample 3

:

:

:

:

&_DMA_BASE+DMA5STA+PIA (for Transfer 2)

&_DMA_BASE+DMA5STA+PIA (for Transfer 12)

:
:
:

:
:
:
:
:
:
:
:
:
:
:
:

Transfer 1
Transfer 5
Transfer 2Transfer 3Transfer 4

Transfer 12

Peripheral Indirect Address (PIA)
DS70215C-page 38-30 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
As mentioned earlier, user must pay special attention to the number of LSbs that are reserved 
for the peripheral when the DMAxSTA and DMAxSTB registers are initialized by the user 
application. For the ADC, the number of bits will depend on the size and number of the ADC 
buffers.

The number of ADC buffers is initialized with the Increment Rate for the 
SMPI<3:0> bits (ADCxCON2<5:2>). The size of each ADC buffer is initialized with the 
DMABL<2:0> bits (ADCxCON4<2:0>). For example, if the SMPI<3:0> bits are initialized to 3 
and the DMABL<2:0> bits are initialized to 3, there will be four ADC buffers (SMPI<3:0> + 1), 
each with eight words (2DMABL<2:0>), for the total of 32 words (64 bytes). This means that the 
address offset that is written into the DMAxSTA and DMAxSTB must have 6 (26 bits = 64 bytes) 
LSbs set to zero.

If the MPLAB C30 compiler is used to initialized the DMAxSTA and DMAxSTAB registers, proper 
data alignment must be specified through data attributes. For the above conditions, the code 
shown in Example 38-6 will initialize the DMAxSTA and DMAxSTB registers.

Example 38-6: DMA Buffer Alignment with MPLAB® C30

Example 38-7 illustrates the code for this configuration.

Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing

int  BufferA[4][8] __attribute__((space(dma),aligned(64)));
int  BufferB[4][8] __attribute__((space(dma),aligned(64)));

DMA0STA = __builtin_dmaoffset(BufferA);
DMA0STB = __builtin_dmaoffset(BufferB);

Set up ADC1 for channel 0-3 sampling:
AD1CON1bits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
AD1CON1bits.SSRC = 2; // Sample Clock Source: GP Timer starts conversion
AD1CON1bits.ASAM = 1; // Sampling begins immediately after 
conversion
AD1CON1bits.AD12B = 0; // 10-bit ADC operation
AD1CON1bits.SIMSAM = 0; // Samples multiple channels sequentially

AD1CON2bits.BUFM = 0;
AD1CON2bits.CSCNA = 1; // Scan CH0+ Input Selections during Sample A 
bit
AD1CON2bits.CHPS = 0; // Converts CH0

AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock
AD1CON3bits.ADCS = 63; // ADC Conversion Clock

//AD1CHS0: A/D Input Select Register
AD1CHS0bits.CH0SA = 0; // MUXA +ve input selection (AIN0) for CH0
AD1CHS0bits.CH0NA = 0; // MUXA -ve input selection (Vref-) for CH0

//AD1CHS123: A/D Input Select Register
AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AIN0) for CH1
AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (Vref-) for CH1

//AD1CSSH/AD1CSSL: A/D Input Scan Selection Register
AD1CSSH = 0x0000;
AD1CSSL = 0x000F; // Scan AIN0, AIN1, AIN2, AIN3 inputs

Set up Timer3 to trigger ADC1 conversions:
TMR3 = 0x0000;
PR3 = 4999;// Trigger ADC1 every 125usec
IFS0bits.T3IF = 0; // Clear Timer3 interrupt
IEC0bits.T3IE = 0; // Disable Timer3 interrupt

T3CONbits.TON = 1; //Start Timer3
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-31



dsPIC33F/PIC24H Family Reference Manual
Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing (Continued)
Set up DMA Channel 5 for Peripheral Indirect Addressing:
int BufferA[4][8] __attribute__((space(dma), aligned(64)));
BufferB[4][8] __attribute__((space(dma), aligned(64)));
int
DMA5CONbits.AMODE = 2; // Configure DMA for Peripheral indirect mode
DMA5CONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
DMA5PAD = (volatile unsigned int)&ADC1BUF0;// Point DMA to ADC1BUF0
DMA5CNT = 31; // 32 DMA request (4 buffers, each with 8 words)
DMA5REQ = 13; // Select ADC1 as DMA Request source

DMA5STA = __builtin_dmaoffset(BufferA);
DMA5STB = __builtin_dmaoffset(BufferB);

IFS3bits.DMA5IF = 0; //Clear the DMA interrupt flag bit
IEC3bits.DMA5IE = 1; //Set the DMA interrupt enable bit

DMA5CONbits.CHEN=1; // Enable DMA

Set up DMA Channel 5 Interrupt Handler:
unsigned int DmaBuffer = 0;

void __attribute__((interrupt, no_auto_psv)) _DMA5Interrupt(void)
{

// Switch between Primary and Secondary Ping-Pong buffers
if(DmaBuffer == 0)

{
ProcessADCSamples(&BufferA[0][0]);
ProcessADCSamples(&BufferA[1][0]);
ProcessADCSamples(&BufferA[2][0]);
ProcessADCSamples(&BufferA[3][0]);

}
else
{

ProcessADCSamples(&BufferB[0][0]);
ProcessADCSamples(&BufferB[1][0]);
ProcessADCSamples(&BufferB[2][0]);
ProcessADCSamples(&BufferB[3][0]);

}

DmaBuffer ^= 1;

IFS3bits.DMA5IF = 0; //Clear the DMA5 Interrupt Flag
}

Set up ADC1 for DMA operation:
AD1CON1bits.ADDMABM = 0; // DMA buffers are built in scatter/gather mode
AD1CON2bits.SMPI    = 3; // 4 ADC buffers
AD1CON4bits.DMABL   = 3; // Each buffer contains 8 words
        
IFS0bits.AD1IF      = 0; // Clear the A/D interrupt flag bit
IEC0bits.AD1IE      = 0; // Do Not Enable A/D interrupt 
AD1CON1bits.ADON    = 1; // Turn on the A/D converter
DS70215C-page 38-32 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.6.6.2 ECAN SUPPORT FOR DMA ADDRESS GENERATION

Peripheral Indirect Addressing can also be used with the ECAN module to let ECAN define more 
specific addressing functionality. When the dsPIC33F/PIC24H device filters and receives 
messages through the CAN bus, the messages can be categorized into two groups:

• Received messages that must be processed
• Received messages that must be forwarded to other CAN nodes without processing

In the first case, received messages must be reconstructed into buffers of eight words each 
before they can be processed by the user application. With multiple ECAN buffers located in the 
DMA RAM, it would be easier to let the ECAN peripheral generate RAM addresses for incoming 
(or outgoing) data, as illustrated in Figure 38-13. In this figure, Buffer 2 is received first, followed 
by Buffer 0. The ECAN module generates destination addresses to properly place data in the 
DMA RAM (Peripheral Indirect Addressing).

Figure 38-13: Data Transfer from ECAN™ with Peripheral Indirect Addressing

As mentioned earlier, you must pay special attention to the number of LSbs that are reserved for 
the peripheral when the DMAxSTA and DMAxSTB registers are initialized by the user application 
and the DMA is operating in Peripheral Indirect Addressing mode. For the ECAN module, the 
number of bits depends on the number of ECAN buffers defined by the DMA Buffer Size 
bits (DMABS<2:0>) in the ECAN FIFO Control register (CiFCTRL<15:13>). 

For example, if the ECAN module reserves 12 buffers by setting DMABS<2:0> bits to ‘3’, 
there will be 12 buffers with 8 words each, for a total of 96 words (192 bytes). This means 
that the address offset that is written into the DMAxSTA and DMAxSTB registers must 
have 8 LSbs (28 bits = 256 bytes) set to ‘0’. If the MPLAB C30 compiler is used to initialize 
the DMAxSTA register, proper data alignment must be specified through data attributes. For 
this example, the code in Example 38-8 properly initializes the DMAxSTA register.

Example 38-8: DMA Buffer Alignment with MPLAB® C30

Buffer 0: SID
Buffer 0: EID

:
:
:
:
:
:

Buffer 2: SID
Buffer 2: EID

:
:
:
;
:
:

&_DMA_BASE

ECAN
DMA

Channel
0

RX

Data

DMA
Request

Transfer 9

Transfer 1

Transfer 8

Peripheral Indirect Address

Transfer 16

Buffer 0

Buffer 1

Buffer 2

int  BufferA[12][8] __attribute__((space(dma),aligned(256)));

DMA0STA = __builtin_dmaoffset(&BufferA[0][0]);
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-33



dsPIC33F/PIC24H Family Reference Manual
Example 38-9 illustrates the code for this configuration.

However, processing of incoming messages may not always be a requirement. For instance, in 
some automotive applications, received messages can simply be forwarded to another node 
rather than being processed by the CPU. In this case, received buffers do not have to be sorted 
in memory and can be forwarded as they become available. 

This mode of data transfer can be achieved with the DMA in Register Indirect Addressing with 
Post-Increment. Figure 38-14 illustrates this scenario.

Example 38-9: Code for ECAN™ and DMA with Peripheral Indirect Addressing
Set up ECAN1 with two filters:
/* Initialize ECAN clock first. See ECAN section for example code */

C1CTRL1bits.WIN = 1; // Enable filter window
C1FEN1bits.FLTEN0 = 1; // Filter 0 is enabled
C1FEN1bits.FLTEN1 = 1; // Filter 1 is enabled
C1BUFPNT1bits.F0BP = 0; // Filter 0 points to Buffer0
C1BUFPNT1bits.F1BP = 2; // Filter 1 points to Buffer2

C1RXF0SID = 0xFFEA; // Filter 0 configuration
C1RXF0EID = 0xFFFF; 

C1RXF1SID = 0xFFEB; // Filter 1 configuration
C1RXF1EID = 0xFFFF;

C1FMSKSEL1bits.F0MSK = 0; // Mask 0 used for both filters
C1FMSKSEL1bits.F1MSK = 0; // Mask 0 used for both filters
C1RXM0SID = 0xFFEB;
C1RXM0EID = 0xFFFF;

C1FCTRLbits.DMABS = 3; // 12 buffers in DMA RAM
C1FCTRLbits.FSA   = 3; // FIFO starts from TX/RX Buffer 3

C1CTRL1bits.WIN     = 0;
C1TR01CONbits.TXEN0 = 0; // Buffer 0 is a receive buffer
C1TR23CONbits.TXEN2 = 0; // Buffer 2 is a receive buffer

C1TR01CONbits.TX0PRI = 0b11; //High Priority
C1TR01CONbits.TX1PRI = 0b10; //Intermediate High Priority

C1CTRL1bits.REQOP = 0;// Enable Normal Operation Mode

Set up DMA Channel 0 for Peripheral Indirect Addressing:
unsigned int Ecan1Rx[12][8] __attribute__((space(dma)));// 12 buffers, 8 
words each

DMA0CONbits.AMODE = 2; // Continuous mode, single buffer
DMA0CONbits.MODE = 0; // Peripheral Indirect Addressing

DMA0PAD = (volatile unsigned int) &C1RXD; // Point to ECAN1 Rx register
DMA0STA = __builtin_dmaoffset(Ecan1Rx); // Point DMA to ECAN1 buffers

DMA0CNT = 7; // 8 DMA request (1 buffer, each with 8 words)
DMA0REQ = 0x22; // Select ECAN1 Rx as DMA Request source

IEC0bits.DMA0IE = 1; // Enable DMA Channel 0 interrupt
DMA0CONbits.CHEN = 1; // Enable DMA Channel 0

Set up DMA Interrupt Handlers:
void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{
   ProcessData(Ecan1Rx[C1VECbits.ICODE]); // Process received buffer;
   
   IFS0bits.DMA0IF = 0; // Clear the DMA0 Interrupt Flag;
}

DS70215C-page 38-34 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Figure 38-14: Data Transfer from ECAN™ with Register Indirect Addressing

ECAN 1

Buffer 2: SID
Buffer 2: EID

:
:
:
:
:
:

&_DMA_BASE

ECAN 1
DMA

Channel
0

RX

Data

DMA
Request

Transfer 1

Transfer 8

Buffer 2

Buffer 2: SID
Buffer 2: EID

:
:
:
:
:
:

Buffer 0: SID
Buffer 0: EID

:
:
:
:
:
:

ECAN 1
DMA

Channel
0

RX

Data

DMA
Request

Transfer 9

Transfer 16 Buffer 0

Buffer 2: SID
Buffer 2: EID

:
:
:
:
:
:

Buffer 0: SID
Buffer 0: EID

:
:
:
:
:
:

&_DMA_BASE

Transfer 9

Transfe
r 1

6

DMA
Channel

1
ECAN 1

TX
Data

DMA
Request

Transfer 1

Transfer 8

DMA
Channel

1

TX
Data

DMA
Request

Receive Buffer 2A

Receive Buffer 0 and Transmit Buffer 2B

Transmit Buffer 0C
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-35



dsPIC33F/PIC24H Family Reference Manual
38.6.7 One-Shot Mode
One-Shot mode is used by the application program when repetitive data transfer is not required. 
One-Shot mode is selected by programming the DMA Channel Operating Mode Select bits, 
MODE<1:0> (DMAxCON<1:0>) to ‘x1’. In this mode, when the entire data block is moved (block 
length as defined by DMAxCNT), the data block end is detected and the channel is automatically 
disabled (that is, the Channel Enable bit, CHEN (DMAxCON<15>) is cleared by the hardware). 
Figure 38-15 illustrates One-Shot mode.

Figure 38-15: Data Block Transfer with One-Shot Mode

If the HALF bit (DMAxCON<12>) is set, the DMAxIF bit is set (and the DMA interrupt is 
generated, if enabled by the application program) when half of the data block transfer is complete 
and the channel remains enabled. When the full block transfer is complete, no interrupt flag is 
set and the channel is automatically disabled. For information on how to set up the DMA channel 
to interrupt on both half and full block transfer, refer to 38.6.3 “Full or Half Block Transfer 
Interrupts”.

If the channel is re-enabled by setting the CHEN bit (DMAxCON<15>) to ‘1’, the block transfer 
takes place from the start address, as provided by the DMAxSTA and DMAxSTB registers. 
Example 38-10 illustrates the code for One-Shot operation.

Example 38-10: Code for UART and DMA with One-Shot Mode

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

COUNT =DMAxCNT+1

&_DMA_BASE+DMAxSTA

CPU Block Transfer Complete IRQ

Set up UART for RX and TX:
#define FCY      40000000
#define BAUDRATE 9600                
#define BRGVAL   ((FCY/BAUDRATE)/16)-1

U2MODEbits.STSEL = 0; // 1-stop bit
U2MODEbits.PDSEL = 0; // No Parity, 8-data bits
U2MODEbits.ABAUD = 0; // Autobaud Disabled

U2BRG = BRGVAL;// BAUD Rate Setting for 9600

U2STAbits.UTXISEL0 = 0; // Interrupt after one Tx character is transmitted
U2STAbits.UTXISEL1 = 0;                            
U2STAbits.URXISEL = 0; // Interrupt after one RX character is received

U2MODEbits.UARTEN   = 1; // Enable UART
U2STAbits.UTXEN     = 1; // Enable UART Tx
DS70215C-page 38-36 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Example 38-10: Code for UART and DMA with One-Shot Mode (Continued)
Set up DMA Channel 0 to Transmit in One-Shot, Single-Buffer mode:
unsigned int BufferA[8] __attribute__((space(dma)));
unsigned int BufferB[8] __attribute__((space(dma)));

DMA0CON = 0x2001; // One-Shot, Post-Increment, RAM-to-Peripheral
DMA0CNT = 7; // 8 DMA requests
DMA0REQ = 0x001F; // Select UART2 Transmitter

DMA0PAD = (volatile unsigned int) &U2TXREG;
DMA0STA = __builtin_dmaoffset(BufferA);

IFS0bits.DMA0IF = 0; // Clear DMA Interrupt Flag
IEC0bits.DMA0IE = 1; // Enable DMA interrupt

Set up DMA Channel 1 to Receive in Continuous Ping-Pong mode:
DMA1CON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMA1CNT = 7; // 8 DMA requests
DMA1REQ = 0x001E; // Select UART2 Receiver

DMA1PAD = (volatile unsigned int) &U2RXREG;
DMA1STA = __builtin_dmaoffset(BufferA);
DMA1STB = __builtin_dmaoffset(BufferB);

IFS0bits.DMA1IF = 0; // Clear DMA interrupt
IEC0bits.DMA1IE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel

Set up DMA Interrupt Handlers:
void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{
   IFS0bits.DMA0IF = 0; // Clear the DMA0 Interrupt Flag;
}

void __attribute__((interrupt, no_auto_psv)) _DMA1Interrupt(void)
{
   static unsigned int BufferCount = 0; // Keep record of which buffer

// contains Rx Data

   if(BufferCount == 0)
   {

DMA0STA = __builtin_dmaoffset(BufferA); // Point DMA 0 to data 
// to be transmitted

   }
   else
 {

DMA0STA = __builtin_dmaoffset(BufferB); // Point DMA 0 to data 
// to be transmitted

   }

   DMA0CONbits.CHEN = 1; // Enable DMA0 Channel
   DMA0REQbits.FORCE = 1; // Manual mode: Kick-start the 1st transfer

   BufferCount ^= 1;
   IFS0bits.DMA1IF = 0; // Clear the DMA1 Interrupt Flag
}

© 2007-2012 Microchip Technology Inc. DS70215C-page 38-37



dsPIC33F/PIC24H Family Reference Manual
38.6.8 Continuous Mode
Continuous mode is used by the application program when repetitive data transfer is required 
throughout the life of the program. 

This mode is selected by programming the MODE<1:0> bits (DMAxCON<1:0>) to ‘x0’. In this 
mode, when the entire data block is moved (block length as defined by DMAxCNT), the data 
block end is detected and the channel remains enabled. During the last data transfer, DMA 
DPSRAM address resets back to (primary) the DMAxSTA register. Figure 38-16 illustrates 
Continuous mode.

Figure 38-16: Repetitive Data Block Transfer with Continuous Mode

If the HALF bit (DMAxCON<12>) is set, the DMAxIF is set (and DMA interrupt is generated, if 
enabled) when half of the data block transfer is complete. The channel remains enabled. When 
the full block transfer is complete, no interrupt flag is set and the channel remains enabled. For 
more information on how to set up the DMA channel to interrupt on both half and full block 
transfer, refer to 38.6.3 “Full or Half Block Transfer Interrupts”.

38.6.9 Ping-Pong Mode
Ping-Pong mode allows the CPU to process one buffer while a second buffer operates with the 
DMA channel. The net result is that the CPU has the entire DMA block transfer time in which to 
process the buffer currently not being used by the DMA channel. Of course, this transfer mode 
doubles the amount of DPSRAM needed for a given size of buffer.

In all DMA operating modes, when the DMA channel is enabled, the (primary) DMAxSTA register 
is selected by default to generate the initial DPSRAM effective address. As each block transfer 
completes and the DMA channel is reinitialized, the buffer start address is sourced from the same 
DMAxSTA register.

In Ping-Pong mode, the buffer start address is derived from two registers:

• Primary DMAxSTA register
• Secondary DMAxSTB register

DMA uses a secondary buffer for alternate block transfers. As each block transfer completes and 
the DMA channel is reinitialized, the buffer start address is derived from the alternate register.

Ping-Pong mode is selected by programming the MODE<1:0> bits (DMAxCON<1:0>) to ‘1x’.

If Continuous mode is selected while the DMA is operating in Ping-Pong mode, DMA responds 
by reinitializing to point to the secondary buffer after transferring the primary buffer, and then 
transfers the secondary buffer. Subsequent block transfers alternate between primary and 
secondary buffers. Interrupts are generated (if enabled by the application program) after each 
buffer is transferred. Figure 38-17 illustrates Ping-Pong mode with continuous operation. 
Example 38-11 illustrates the code used for Ping-Pong operation using the DCI module as an 
example.

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTA

COUNT=0
Count = DMAxCNT+1

CPU Block Transfer Complete IRQ
DS70215C-page 38-38 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
Figure 38-17: Repetitive Data Transfer in Ping-Pong Mode

Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTA

COUNT = 0

COUNT = DMAxCNT+1

CPU Block Transfer
Complete IRQ

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTB

COUNT = DMAxCNT+1

CPU Block Transfer Complete IRQ

Buffer A (Primary)

Buffer B (Secondary)

Set up DCI for RX and TX:
#define FCY 40000000
#define FS 48000
#define FCSCK 64*FS
#define BCGVAL (FCY/(2*FS))-1

DCICON1bits.CSCKD = 0; // Serial Bit Clock (CSCK pin) is output
DCICON1bits.CSCKE = 0; // Data sampled on falling edge of CSCK
DCICON1bits.COFSD = 0; // Frame Sync Signal is output
DCICON1bits.UNFM = 0; // Transmit '0's on a transmit underflow
DCICON1bits.CSDOM = 0; // CSDO pin drives '0's during disabled TX time slots
DCICON1bits.DJST = 0; // TX/RX starts 1 serial clock cycle after frame sync pulse
DCICON1bits.COFSM = 1; // Frame Sync Signal set up for I2S mode

DCICON2bits.BLEN = 0; // One data word will be buffered between interrupts
DCICON2bits.COFSG = 1; // Data frame has 2 words: LEFT & RIGHT samples
DCICON2bits.WS = 15; // Data word size is 16 bits

DCICON3 = BCG_VAL;// Set up CSCK Bit Clock Frequency

TSCONbits.TSE0 = 1;    // Transmit on Time Slot 0
TSCONbits.TSE1 = 1;    // Transmit on Time Slot 1
RSCONbits.RSE0 = 1;    // Receive on Time Slot 0
RSCONbits.RSE1 = 1;    // Receive on Time Slot 1

Set up DMA Channel 0 for Transmit in Continuous Ping-Pong mode:
unsigned int TxBufferA[16] __attribute__((space(dma)));
unsigned int TxBufferB[16] __attribute__((space(dma)));

DMA0CON = 0x2002; // Ping-Pong, Continous, Post-Increment, RAM-to-Peripheral
DMA0CNT = 15; // 15 DMA requests
DMA0REQ = 0x003C; // Select DCI as DMA Request source
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-39



dsPIC33F/PIC24H Family Reference Manual
Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation 
(Continued)

DMA0PAD = (volatile unsigned int) &TXBUF0;
DMA0STA = __builtin_dmaoffset(TxBufferA);
DMA0STB = __builtin_dmaoffset(TxBufferB);

IFS0bits.DMA0IF = 0; // Clear DMA Interrupt Flag
IEC0bits.DMA0IE = 1; // Enable DMA interrupt
DMA0CONbits.CHEN = 1; // Enable DMA Channel

Set up DMA Channel 1 for Receive in Continuous Ping-Pong mode:
unsigned int RxBufferA[16] __attribute__((space(dma)));
unsigned int RxBufferB[16] __attribute__((space(dma)));

DMA1CON = 0x0002; // Continuous, Ping-Pong, Post-Inc., Periph-RAM
DMA1CNT = 15; // 16 DMA requests
DMA1REQ = 0x003C; // Select DCI as DMA Request source

DMA1PAD = (volatile unsigned int) &RXBUF0;
DMA1STA = __builtin_dmaoffset(RxBufferA);
DMA1STB = __builtin_dmaoffset(RxBufferB);

IFS0bits.DMA1IF = 0;// Clear DMA interrupt
IEC0bits.DMA1IE = 1;// Enable DMA interrupt
DMA1CONbits.CHEN = 1;// Enable DMA Channel

Set up DMA Interrupt Handlers:
void __attribute__((interrupt, no_auto_psv)) _DMA0Interrupt(void)
{
   static unsigned int TxBufferCount = 0; // Keep record of which buffer 

 // has Rx Data

   if(BufferCount == 0)
   {

/* Notify application that TxBufferA has been transmitted */
   }
   else
   {

/* Notify application that TxBufferB has been transmitted */
   }

   BufferCount ^= 1;
   IFS0bits.DMA0IF = 0; // Clear the DMA0 Interrupt Flag;
}
void __attribute__((interrupt, no_auto_psv)) _DMA1Interrupt(void)
{
   static unsigned int RxBufferCount = 0; // Keep record of which buffer 

 // has Rx Data

   if(BufferCount == 0)

{
/* Notify application that RxBufferA has been received */

   }
   else
   {

/* Notify application that RxBufferB has been received */   }

BufferCount ^= 1;
   IFS0bits.DMA1IF = 0; // Clear the DMA1 Interrupt Flag
}

Enable DCI:
/* Force First two words to fill-in Tx buffer/shift register */
DMA0REQbits.FORCE = 1;
while(DMA0REQbits.FORCE == 1);
    
DMA0REQbits.FORCE = 1;
while(DMA0REQbits.FORCE == 1);

DCICON1bits.DCIEN = 1; // Enable DCI
DS70215C-page 38-40 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
If One-Shot mode is selected while the DMA controller is operating in Ping-Pong mode, the DMA 
responds by reinitializing to point to the secondary buffer after transferring primary buffer and 
then transfers the secondary buffer. Subsequent block transfers will not occur, however, because 
the DMA channel disables itself. Figure 38-18 illustrates One-Shot data transfer in Ping-Pong 
mode.

Figure 38-18: Single Block Data Transfer in Ping-Pong Mode

&_DMA_BASE

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTA

COUNT=0

COUNT = DMAxCNT+1

CPU Block Transfer
Complete IRQ

Transfer #1
Transfer #2
Transfer #3

Transfer #n

C
O
U
N
T
+
+

&_DMA_BASE+DMAxSTB

COUNT = DMAxCNT+1

CPU Block Transfer Complete IRQ
Disable DMA Channel

Buffer A (Primary)

Buffer B (Secondary)
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-41



dsPIC33F/PIC24H Family Reference Manual
38.6.10 Manual Transfer Mode
For peripherals that are sending data to the DPSRAM using the DMA controller, the DMA data 
transfer starts automatically after the DMA channel and peripheral are initialized. When the 
peripheral is ready to move data to the DPSRAM, it issues a DMA request. If data also needs to 
be sent to the peripheral at this time, the same DMA request can be used to activate another 
channel to read data from DPSRAM and write it to the peripheral.

Conversely, if the application only needs to send data to a peripheral (from a DPSRAM buffer) 
an initial (manual) data load into the peripheral may be required to start the process (see 
38.7 “Starting DMA Transfer”). This process could be initiated with conventional software. 
However, a more convenient approach is to simply mimic the channel DMA request by setting a 
bit within the selected DMA channel. The DMA channel processes the forced request as it would 
any other request and transfers the first data element to start the sequence. When the peripheral 
is ready for the next piece of data, it sends a normal DMA request and the DMA sends the next 
data element. This process is illustrated in Figure 38-19.

A manual DMA request can be created by setting the FORCE bit (DMAxREQ<15>). Once set, 
the FORCE bit (DMAxREQ<15>) cannot be cleared by the user application. It must be cleared 
by hardware when the forced DMA transfer is complete. Depending on when the FORCE bit 
(DMAxREQ<15>) is set, these special conditions apply:

• Setting the FORCE bit (DMAxREQ<15>) while the DMA transfer is in progress has no 
effect and is ignored.

• Setting the FORCE bit (DMAxREQ<15>) while the channel x is being configured (that is, 
setting the FORCE bit (DMAxREQ<15>) during the same write that configures DMA 
channel) can result in unpredictable behavior and should be avoided.

• An attempt to set the FORCE bit (DMAxREQ<15>) while a peripheral IRQ is pending (for 
this channel) is discarded in favor of the interrupt based request. However, an error 
condition is generated by setting both the DMA RAM Write Collision Flag bit (XWCOLx) 
and the Peripheral Write Collision Flag bit (PWCOLx) in the DMA Controller Status 0 
register (DMACS0). For more information, refer to 38.10 “Data Write Collisions”.

Figure 38-19: Data Transfer Initiated in Manual Mode

&_DMA_BASE

&_DMA_BASE + DMA3STA 
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0

Peripheral 
1

DMA
Channel 6

First Transfer ForcedA

&_DMA_BASE

&_DMA_BASE + DMA3STA 
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1

Peripheral 
1

DMA
Channel 6

Subsequent Transfers Requested by PeripheralB

CPU Write to
FORCE Bit

Data 1
Data 2

Data 2

Transfer 1

Transfer 2Transfer 3

DMA Request
DS70215C-page 38-42 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.6.11 Null Data Write Mode
Null Data Write mode is the most useful in applications in which sequential reception of data is 
required without any data transmission like SPI.

The SPI is essentially a simple shift register, clocking a bit of data in and out for each clock period. 
However, an unusual situation arises when the SPI is configured in Master mode (that is, when 
the SPI is to be the source of the clock) but only received data is of interest. In this case, 
something must be written to the SPI data register to start the SPI data clock and receive the 
external data.

It would be possible to allocate two DMA channels, one for data reception and the other to simply 
feed null, or zero, data into the SPI. However, a more efficient solution is to use a DMA Null Data 
Write mode that automatically writes a null value to the SPI data register after each data element 
has been received and transferred by the DMA channel configured for peripheral data reads.

If the Null Data Peripheral Write Mode Select bit, NULLW (DMAxCON<11>) is set, and the DMA 
channel is configured to read from the peripheral, then the DMA channel also executes a null (all 
zeros) write to the peripheral address in the same cycle as the peripheral data read. This write 
occurs across the peripheral bus concurrently with the (data) write to the DPSRAM (across the 
DPSRAM bus). Figure 38-20 illustrates this mode.

During normal operation in this mode, the Null Data Write can only occur in response to a 
peripheral DMA request (that is, after data has been received and is available for transfer). An 
initial CPU write to the peripheral is required to start reception of the first word, after which the 
DMA takes care of all subsequent peripheral (null) data writes. That is, the CPU null write starts 
the SPI (master) sending/receiving data which in turn eventually generates a DMA request to 
move the newly received data.

Alternately, a forced DMA transfer could be used to ‘kick start’ the process. However, this will also 
include a redundant peripheral read (data not valid) and an associated DPSRAM pointer 
adjustment, which must be taken into account. Example 38-12 demonstrates the code SPI and 
DMA with Null Data Write mode.

Figure 38-20: Data Transfer with Null Data Write Mode

&_DMA_BASE

&_DMA_BASE + DMA3STA 
&_DMA_BASE + DMA3STA + 1
&_DMA_BASE + DMA3STA + 2

Data 0
Data 1

SPI 
DMA

Channel 1

Data 2

Transfer 2Transfer 3

Transfer 1
TX

RX

Null Data Writes 
generated by DMA

Data Transfer
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-43



dsPIC33F/PIC24H Family Reference Manual
Example 38-12: SPI and DMA with Null Data Write Mode
Set up SPI for Master mode:
SPI1CON1bits.MODE16 = 1; //Communication is word-wide (16 bits)
SPI1CON1bits.MSTEN = 1; //Master Mode Enabled
SPI1STATbits.SPIEN = 1; //Enable SPI Module

Set up DMA Channel 1 for Null Data Write mode:
unsigned int BufferA[16] __attribute__((space(dma)));
unsigned int BufferB[16] __attribute__((space(dma)));

DMA1CON = 0x0802; // Null Write, Continuous, Ping-Pong,
// Post-Increment, Periph-to-RAM

DMA1CNT = 15; // Transfer 16 words at a time
DMA1REQ = 0x000A; // Select SPI1 as DMA request source

DMA1STA = __builtin_dmaoffset(BufferA);
DMA1STB = __builtin_dmaoffset(BufferB);
DMA1PAD = (volatile unsigned int) &SPI1BUF;

IFS0bits.DMA1IF = 0;
IEC0bits.DMA1IE = 1; // Enable DMA interrupt
DMA1CONbits.CHEN = 1; // Enable DMA Channel

DMA1REQbits.FORCE = 1; // Force First word after Enabling SPI

Set up DMA Interrupt Handler:
void __attribute__((interrupt, no_auto_psv)) _DMA1Interrupt(void)
{
   static unsigned int BufferCount = 0; // Keep record of which buffer 

// contains Rx Data

   if(BufferCount == 0)
   {

ProcessRxData(BufferA); // Process received SPI data in 
// DMA RAM Primary buffer

   }
   else
   {

ProcessRxData(BufferB); // Process received SPI data in 
// DMA RAM Secondary buffer

   }

   BufferCount ^= 1;
   IFS0bits.DMA1IF = 0; // Clear the DMA1 Interrupt Flag
}

DS70215C-page 38-44 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.7  STARTING DMA TRANSFER
Before DMA transfers can begin, the DMA channel must be enabled by setting the CHEN bit 
(DMAxCON<15>) to ‘1’. When the DMA channel is active, it can be reinitialized by disabling this 
channel (CHEN = 0), followed by re-enabling it (CHEN = 1). This process resets the DMA 
transfer count to zero and sets the active DMA buffer to the primary buffer.

When the DMA channel and peripheral are properly initialized, the DMA transfer starts as soon 
as the peripheral is ready to move data and issues a DMA request. However, some peripherals 
may not issue a DMA request (and therefore will not start the DMA transfer) until certain 
conditions exist. In these cases, a combination of different DMA modes and procedures may 
need to be applied to initiate the DMA transfer, as described in the following sections.

38.7.1 Starting DMA with the Serial Peripheral Interface (SPI)
Starting the DMA transfer to/from the SPI peripheral depends upon SPI data direction and Slave 
or Master mode:

• TX only in Master mode
In this configuration, no DMA request is issued until the first block of SPI data is sent. To 
initiate DMA transfers, the user application must first send data using the DMA Manual 
Transfer mode, or it must first write data into the SPI buffer (SPIxBUF) independently of the 
DMA.

• RX only in Master mode
In this configuration, no DMA request is issued until the first block of SPI data is received. 
However, in Master mode, no data is received until SPI transmits first. To initiate DMA 
transfers, the user application must use DMA Null Data Write mode, and start DMA Manual 
Transfer mode.

• RX and TX in Master mode
In this configuration, no DMA request is issued until the first block of SPI data is received. 
However, in Master mode, no data is received until the SPI transmits it. To initiate DMA 
transfers, the user application must first send data using the DMA Manual Transfer mode, 
or it must first write data into the SPIxBUF independently of the DMA.

• TX only in Slave mode
In this configuration, no DMA request is issued until the first block of SPI data is received. 
To initiate DMA transfers, the user application must first send data using the DMA Manual 
Transfer mode, or it must first write data into the SPIxBUF independently of the DMA.

• RX only in Slave mode
This configuration generates a DMA request as soon as the first SPI data has arrived, so no 
special steps need to be taken by the user to initiate DMA transfer.

• RX and TX in Slave mode
In this configuration, no DMA request is issued until the first SPI data block is received. To 
initiate DMA transfers, the user application must first send data utilizing DMA Manual 
Transfer mode, or it must first write data into the SPIxBUF independently of the DMA.

38.7.2 Starting DMA with the Data Converter Interface (DCI)
Unlike other serial peripherals, the DCI starts transmitting as soon as it is enabled (assuming it 
is the Master). It constantly feeds synchronous frames of data to the external codec to which it is 
connected. Before enabling DCI, the user must:

• Configure the DCI as described in 38.5.2 “Peripheral Configuration Setup”
• If connected to a stereo codec, use DMA Manual Transfer mode to initiate the first two data 

transfers:
- Set the FORCE bit (DMAxREQ<15>) to transfer the DCI left channel sample
- Set the FORCE bit (DMAxREQ<15>) for the second time to transfer the DCI right 

channel sample

After these steps are completed, enable the DCI peripheral (see Example 38-11).
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-45



dsPIC33F/PIC24H Family Reference Manual
38.7.3 Starting DMA with the UART
The UART receiver issues a DMA request as soon as data is received. No special steps need to 
be taken by the user application to initiate DMA transfer. The UART transmitter issues a DMA 
request as soon as the UART and transmitter are enabled. This means that the DMA channel 
and buffers must be initialized and enabled before the UART and transmitter. Ensure that the 
UART is configured as described in 38.5.2 “Peripheral Configuration Setup” (see Table 38-2).

While configuring for UART reception, the DMA channel word size should be set to 16 bit. This 
configures the DMA channel to read 16 bits from the UART module when data is available to be 
read. The lower byte of the data represents the actual data byte received by the UART module. 
The upper byte of the transferred contains the UART status when the byte was received. Note 
that reading the UxSTA register when the UART reception is DMA enabled, will not return the 
status of the Framing Error Status bits, FERR (UxSTA<2>), and Parity Error Status bit, PERR 
(UxSTA<3>). For more information, refer to Section 17. “UART” (DS70188).

Alternately, the UART and UART transmitter can be enabled before the DMA channel is enabled. 
In this case, the UART transmitter DMA request will be lost, and the user application must issue 
a DMA request to start DMA transfers by setting the FORCE bit (DMAxREQ <15>).
DS70215C-page 38-46 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.8  DMA CHANNEL ARBITRATION AND OVERRUNS
Each DMA channel has a fixed priority. Channel 0 is the highest, and Channel 7 is the lowest. 
When a DMA transfer is requested by the source, the request is latched by the associated DMA 
channel. The DMA controller acts as an arbitrator. If no other transfer is underway or pending, 
the controller grants bus resources to the requesting DMA channel. The DMA controller ensures 
that the no other DMA channel is granted any resource until the current DMA channel completes 
its operation.

If multiple DMA requests arrive or are pending, the priority logic within the DMA controller grants 
resources to the highest priority DMA channel for completing its operation. All other DMA 
requests remain pending until the selected DMA transfer is complete. If another DMA request 
arrives while the current DMA transfer is underway, it is also prioritized with any pending DMA 
requests, ensuring that the highest priority request is always serviced after the current DMA 
transfer has completed.

Because the DMA channels are prioritized, it is possible that a DMA request will not be 
immediately serviced and will become pending. The request will remain pending until all higher 
priority channels have been serviced. If another interrupt arrives before the DMA controller has 
cleared the original DMA request, and the interrupt is the same type as the pending interrupt, a 
data overrun will occur.

A data overrun is defined as the condition where new data has arrived in a peripheral data buffer 
before the DMA could move the prior data. Some DMA-ready peripherals can detect data 
overruns and issue a CPU interrupt (if the corresponding peripheral error interrupt is enabled), 
as shown in Table 38-5.

Table 38-5: Overrun Handling by DMA-Ready Peripherals

Data overruns are only detectable in hardware when the DMA controller is moving data from a 
peripheral to DPSRAM. DMA data transfers from DPSRAM to a peripheral (based on, for 
example, a buffer empty interrupt) will always execute. Any consequential DPSRAM data 
overruns must be detected using software. The duplicate DMA request is ignored and the 
pending request remains pending. As usual, the DMA channel clears the DMA request when the 
transfer is eventually completed. If the CPU does not intervene in the meantime, the data 
transferred will be the latest (overrun) data, and the prior data will be lost.

DMA-Ready Peripheral Data Overrun Handling
SPI Data waiting to be moved by the DMA channel is not overwritten by additional incoming 

data. Subsequent incoming data is lost and the SPI Receive Overflow (SPIROV) bit is set in 
the SPI Status register (SPIxSTAT<6>). Also the SPIx fault interrupt is generated if the SPI 
Error Interrupt Enable bit (SPIxEIE) is set in the Interrupt Enable Control register (IECx), in 
the Interrupt Controller module. 

UART Data waiting to be moved by the DMA channel is not overwritten by additional incoming 
data. Subsequent incoming data is lost and the Overflow Error bit (OERR) is set in the 
UART Status register (UxSTA<1>). Also, the UARTX Error interrupt is generated if the 
UART Error Interrupt Enable bit (UxEIE), is set in the IECx register in the Interrupt 
Controller module.

DCI Data waiting to be moved by the DMA channel is overwritten by additional incoming data 
and the Receive Overflow bit (ROV) is set in the DCI Status register (DCISTAT<1>). Also 
the DCI fault interrupt is generated if the DCI Error Interrupt Enable bit, DCIEIE (IEC3<11>), 
is set in the Interrupt Controller module.

10-bit/12-bit ADC Data waiting to be moved by the DMA channel is overwritten by additional incoming data. 
The overrun condition is not detected by the ADC.

Other DMA-Ready 
Peripherals

No data overrun can occur.
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-47



dsPIC33F/PIC24H Family Reference Manual
The user application can handle an overrun error in different ways, depending on the nature of 
the data source. Data recovery and resynchronization of the DMAC with its data source/sink is a 
task that is highly application dependent. For streaming data, such as that from a CODEC 
(through the DCI peripheral), the application can ignore the lost data. After fixing the source of 
the problem (if possible), the DMA interrupt handler should attempt to resynchronize the DMAC 
and DCI so that data is again buffered correctly. The user application should react fast enough 
to prevent any further overruns occurring. 

By the time the peripheral overrun interrupt is entered, the pending DMA request will have 
already moved the overrun data value to the address where the lost data should have gone. That 
data can be moved to its correct address, and a null data value inserted into the missing data 
slot. The DPSRAM address of the channel can then be adjusted accordingly. Subsequent DMA 
requests to the faulted channel then initiate transfers as normal to the corrected DPSRAM 
address. For applications where the data cannot be lost, the peripheral overrun interrupt will need 
to abort the current block transfer, reinitialize the DMA channel and request a data resend before 
it is lost.
DS70215C-page 38-48 © 2007-2012 Microchip Technology Inc.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.9  DEBUGGING SUPPORT
To improve user visibility into DMA operation during debugging, the DMA controller includes 
several status registers that can provide information on which DMA channel executed the Last 
DMAC Channel Active bits (LSTCH<3:0>) in the DMA Controller Status Register 1 
(DMACS1<11:8>), which DPSRAM address offset it was accessing (DSADR<15:0> bits 
(DSADR<15:0>), and from which buffer (PPSTx bits in the DMACS1 register).

The PPSTx bits will get updated after first byte/word in the new block (new ping-pong half) gets 
transferred by the DMA controller or when user clears associated DMA interrupt flag.

38.10  DATA WRITE COLLISIONS
The CPU and DMA channel may simultaneously read or read/write to any DPSRAM or 
DMA-ready peripheral data register. The only constraint is that the CPU and DMA channel should 
not simultaneously write to the same address. Under normal circumstances, this situation should 
never arise. However, if for some reason it does, then it will be detected and flagged, and a DMA 
fault trap will be initiated. The CPU write will also be allowed to take priority, though that is mainly 
to provide predictable behavior and is otherwise of little practical consequence.

It is also permissible for the DMA channel to write to a location during the same bus cycle that 
the CPU is reading it, and vice versa. However, it should be noted that the resultant reads are of 
the old data, not the data written during that bus cycle. Also note that this situation is considered 
normal operation and does not result in any special action being taken. 

In the event of a simultaneous write to the same DPSRAM address by the CPU and DMA 
channel, the XWCOLx bit is set in the DMA Controller Status 0 (DMACS0) register. In the event 
of a simultaneous write to the same peripheral address by the CPU and DMA channel, the 
PWCOLx bit is set in the DMA Controller Status 0 (DMACS0) register. All collision status flags 
are logically ORed together to generate a common DMAC fault trap. The XWCOLx and PWCOLx 
flags are automatically cleared when the user application clears the DMAC Error Status 
bit (DMACERR) in the Interrupt Controller register (INTCON1<5>).

Subsequent DMA requests to a channel that has a write collision error are ignored while the 
XWCOLx or PWCOLx remain set.

Under write collision conditions, either XWCOLx or PWCOLx could be set due to write collision, 
but not both. Setting both flags is used as a unique means to flag a rare manual trigger event 
error without adding more status bits (see 38.6.10 “Manual Transfer Mode”).

Example 38-13 illustrates DMA controller trap handling with DMA Channel 0 transferring data 
from the DPSRAM to the peripheral (UART), and DMA Channel 1 transferring data from the 
peripheral (ADC) to the DPSRAM.

Example 38-13: DMA Controller Trap Handling
void __attribute__((interrupt, no_auto_psv)) _DMACError(void)
{

static unsigned int ErrorLocation;

// Peripheral Write Collision Error Location
if(DMACS0 & 0x0100)
{

    ErrorLocation = DMA0STA;
}

// DMA RAM Write Collision Error Location
if(DMACS0 & 0x0002)
{

ErrorLocation = DMA1STA;
}

DMACS0 = 0; //Clear Write Collision Flag
INTCON1bits.DMACERR = 0; //Clear Trap Flag

}

© 2007-2012 Microchip Technology Inc. DS70215C-page 38-49



dsPIC33F/PIC24H Family Reference Manual
38.11  OPERATION IN POWER-SAVING MODES

38.11.1 Sleep Mode
The DMA is disabled during Sleep mode. Prior to entering Sleep mode, it is recommended 
(though not essential) that all DMA channels either be allowed to complete the block transfer that 
is currently underway, or be disabled.

38.11.2 Idle Mode
DMA is a second bus master within the system and therefore, can continue to transfer data when 
the CPU has entered Idle mode. Provided the peripheral being serviced by the DMA channel is 
configured for operation during Idle mode, data may be transferred to and from the peripheral 
and DPSRAM. When the block transfer is complete, the DMA channel issues an interrupt (if 
enabled) and wakes up the CPU. The CPU then runs the interrupt service handler.

Each peripheral includes a Stop in Idle control bit. When set, this control bit disables the 
peripheral while the CPU is in Idle mode. If the DMAC is being used to transfer data in and/or out 
of the peripheral, engaging the Stop in Idle feature within the peripheral will, in effect, also disable 
the DMA channel associated with the peripheral.
DS70215C-page 38-50 © 2007-2012 Microchip Technology Inc.



©
 2007-2012 M

icrochip Technology Inc.
D

S
70215C

-page 38-51

Section 38. D
irect M

em
ory A

ccess (D
M

A
) (Part III)

38

Ta
F Bit 3 Bit 2 Bit 1 Bit 0 All 

Resets
DM — — MODE<1:0> 0000
DM SEL<6:0> 0000
DM 0000
DM 0000
DM 0000
DM 0000
DM — — MODE<1:0> 0000
DM SEL<6:0> 0000
DM 0000
DM 0000
DM 0000
DM 0000
DM — — MODE<1:0> 0000
DM SEL<6:0> 0000
DM 0000
DM 0000
DM 0000
DM 0000
DM — — MODE<1:0> 0000
DM SEL<6:0> 0000
DM 0000
DM 0000
DM 0000
DM 0000
DM — — MODE<1:0> 0000
DM SEL<6:0> 0000
DM 0000
DM 0000
DM 0000
DM 0000
DM — — MODE<1:0> 0000
DM SEL<6:0> 0000
DM 0000
DM 0000
DM 0000
DM 0000
DM — — MODE<1:0> 0000
DM SEL<6:0> 0000
Le
N

Direct Memory 
Access (DMA) 

(Part III) 38

.12  REGISTER MAP
A summary of the registers associated with the DMA controller is provided in Table 38-6.

ble 38-6: DMA-Associated Register Map 
ile Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

A0CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A0REQ FORCE — — — — — — — — IRQ
A0STA STA<15:0>
A0STB STB<15:0>
A0PAD PAD<15:0>
A0CNT — — — — — — CNT<9:0>
A1CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A1REQ FORCE — — — — — — — — IRQ
A1STA STA<15:0>
A1STB STB<15:0>
A1PAD PAD<15:0>
A1CNT — — — — — — CNT<9:0>
A2CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A2REQ FORCE — — — — — — — — IRQ
A2STA STA<15:0>
A2STB STB<15:0>
A2PAD PAD<15:0>
A2CNT — — — — — — CNT<9:0>
A3CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A3REQ FORCE — — — — — — — — IRQ
A3STA STA<15:0>
A3STB STB<15:0>
A3PAD PAD<15:0>
A3CNT — — — — — — CNT<9:0>
A4CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A4REQ FORCE — — — — — — — — IRQ
A4STA STA<15:0>
A4STB STB<15:0>
A4PAD PAD<15:0>
A4CNT — — — — — — CNT<9:0>
A5CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A5REQ FORCE — — — — — — — — IRQ
A5STA STA<15:0>
A5STB STB<15:0>
A5PAD PAD<15:0>
A5CNT — — — — — — CNT<9:0>
A6CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
A6REQ FORCE — — — — — — — — IRQ

gend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
ote: Not all bits are available on all devices. Refer to the specific device data sheet for availability.



dsPIC
33F/PIC

24H
 Fam

ily R
eference M

anual

D
S

70215C
-page 38-52

©
 2007-2012 M

icrochip Technology Inc.

0000

0000
0000
0000

— — MODE<1:0> 0000
IRQSEL<6:0> 0000

0000
0000
0000
0000

L4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000
T4 PPST3 PPST2 PPST1 PPST0 0000

0000
— — — — 0000

0IF — — — — 0000
— — — — 0000

3IF — — — — 0000
— — — — 0000

6IF — — — — 0000
IE — — — — 0000

— — — — 0000
IE — — — — 0000

— — — — 0000
IE — — — — 0000

— DMA0IP<2:0> 4444
— — — — 4444
— DMA2IP<2:0> 4444
— DMA3IP<2:0> 4444
— — — — 4444
— — — — 4444
— DMA6IP<2:0> 4444

4 Bit 3 Bit 2 Bit 1 Bit 0 All 
Resets
DMA6STA STA<15:0>

DMA6STB STB<15:0>
DMA6PAD PAD<15:0>
DMA6CNT — — — — — — CNT<9:0>
DMA7CON CHEN SIZE DIR HALF NULLW — — — — — AMODE<1:0>
DMA7REQ FORCE — — — — — — — —
DMA7STA STA<15:0>
DMA7STB STB<15:0>
DMA7PAD PAD<15:0>
DMA7CNT — — — — — — CNT<9:0>
DMACS0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCO
DMACS1 — — — — LSTCH<3:0> PPST7 PPST6 PPST5 PPS
DSADR DSADR<15:0>
INTCON1 NSTDIS — — — — — — — — — DMACERR —
IFS0 — DMA1IF — — — — — — — — — DMA
IFS1 — — — — — — — DMA2IF — — — —
IFS2 — DMA4IF — — — — — — — — — DMA
IFS3 — — DMA5IF — — — — — — — — —
IFS4 — — — — — — — — — — DMA7IF DMA
IEC0 — DMA1IE — — — — — — — — — DMA0
IEC1 — — — — — — — DMA2IE — — — —
IEC2 — DMA4IE — — — — — — — — — DMA3
IEC3 — — DMA5IE — — — — — — — — —
IEC4 — — — — — — — — — — DMA7IE DMA6
IPC1 — — — — — — — — — — — —
IPC3 — — — — — DMA1IP<2:0> — — — —
IPC6 — — — — — — — — — — — —
IPC9 — — — — — — — — — — — —
IPC11 — — — — — DMA4IP<2:0> — — — —
IPC15 — — — — — — — — — DMA5IP<2:0>
IPC17 — — — — — — — — — DMA7IP<2:0>

Table 38-6: DMA-Associated Register Map (Continued)
File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 

Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.
Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.



Section 38. Direct Memory Access (DMA) (Part III)
D

irect M
em

ory 
A

ccess (D
M

A
) 

(Part III)

38
38.13  RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These 
application notes may not be written specifically for the dsPIC33F/PIC24H product family, but the 
concepts are pertinent and could be used with modification and possible limitations. The current 
application notes related to the Direct Memory Access (DMA) (Part III) module are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional Application 
Notes and code examples for the dsPIC33F/PIC24H family of devices.
© 2007-2012 Microchip Technology Inc. DS70215C-page 38-53

http://www.microchip.com
www.microchip.com
www.microchip.com
www.microchip.com


dsPIC33F/PIC24H Family Reference Manual
38.14  REVISION HISTORY

Revision A (October 2007)
This is the initial released version of the document

Revision B (February 2008)
Updated DMA Channel to Peripheral Associations table (see Table 38-1). Value was changed to 
0x608 in the column with title “DMAxPAD Register Values to Write to Peripheral” for the PMP 
Master Data Transfer row.

Revision C (May 2012)
This revision incorporates the following updates:

• Examples:
- Updated Example 38-6 and Example 38-7

• Sections:
- Updated 38.7.3 “Starting DMA with the UART”
- Updated 38.9 “Debugging Support”

• Tables:
- Removed the Address column in Table 38-1

• Minor updates to text and formatting were incorporated throughout the document
DS70215C-page 38-54 © 2007-2012 Microchip Technology Inc.



Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the 
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our 
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data 
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not 
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our 
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts 
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device 
applications and the like is provided only for your convenience 
and may be superseded by updates. It is your responsibility to 
ensure that your application meets with your specifications. 
MICROCHIP MAKES NO REPRESENTATIONS OR 
WARRANTIES OF ANY KIND WHETHER EXPRESS OR 
IMPLIED, WRITTEN OR ORAL, STATUTORY OR 
OTHERWISE, RELATED TO THE INFORMATION, 
INCLUDING BUT NOT LIMITED TO ITS CONDITION, 
QUALITY, PERFORMANCE, MERCHANTABILITY OR 
FITNESS FOR PURPOSE. Microchip disclaims all liability 
arising from this information and its use. Use of Microchip 
devices in life support and/or safety applications is entirely at 
the buyer’s risk, and the buyer agrees to defend, indemnify and 
hold harmless Microchip from any and all damages, claims, 
suits, or expenses resulting from such use. No licenses are 
conveyed, implicitly or otherwise, under any Microchip 
intellectual property rights.
© 2007-2012 Microchip Technology Inc.

QUALITY MANAGEMENT  SYSTEM 
CERTIFIED BY DNV 

== ISO/TS 16949 == 
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, 
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, 
PIC32 logo, rfPIC and UNI/O are registered trademarks of 
Microchip Technology Incorporated in the U.S.A. and other 
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, 
MXDEV, MXLAB, SEEVAL and The Embedded Control 
Solutions Company are registered trademarks of Microchip 
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, 
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, 
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, 
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, 
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, 
MPLINK, mTouch, Omniscient Code Generation, PICC, 
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, 
rfLAB, Select Mode, Total Endurance, TSHARC, 
UniWinDriver, WiperLock and ZENA are trademarks of 
Microchip Technology Incorporated in the U.S.A. and other 
countries.

SQTP is a service mark of Microchip Technology Incorporated 
in the U.S.A.

All other trademarks mentioned herein are property of their 
respective companies.

© 2007-2012, Microchip Technology Incorporated, Printed in 
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-62076-274-5
DS70215C-page  38-55

Microchip received ISO/TS-16949:2009 certification for its worldwide 
headquarters, design and wafer fabrication facilities in Chandler and 
Tempe, Arizona; Gresham, Oregon and design centers in California 
and India. The Company’s quality system processes and procedures 
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping 
devices, Serial EEPROMs, microperipherals, nonvolatile memory and 
analog products. In addition, Microchip’s quality system for the design 
and manufacture of development systems is ISO 9001:2000 certified.



DS70215C-page  38-56 © 2007-2012 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 
Fax: 480-792-7277
Technical Support: 
http://www.microchip.com/
support
Web Address: 
www.microchip.com
Atlanta
Duluth, GA 
Tel: 678-957-9614 
Fax: 678-957-1455
Boston
Westborough, MA 
Tel: 774-760-0087 
Fax: 774-760-0088
Chicago
Itasca, IL 
Tel: 630-285-0071 
Fax: 630-285-0075
Cleveland
Independence, OH 
Tel: 216-447-0464 
Fax: 216-447-0643
Dallas
Addison, TX 
Tel: 972-818-7423 
Fax: 972-818-2924
Detroit
Farmington Hills, MI 
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN 
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA 
Tel: 949-462-9523 
Fax: 949-462-9608
Santa Clara
Santa Clara, CA 
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario, 
Canada
Tel: 905-673-0699 
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000 
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187 
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2401-1200 
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533 
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660 
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138 
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040 
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444 
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-66-152-7160 
Fax: 81-66-152-9310
Japan - Yokohama
Tel: 81-45-471- 6166 
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2500-6610 
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828 
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20 
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0 
Fax: 49-89-627-144-44
Italy - Milan 
Tel: 39-0331-742611 
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399 
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/11

http://support.microchip.com
http://www.microchip.com

	Section 38. Direct Memory Access (DMA) (Part III)
	38.1 Introduction
	Figure 38-1: DMA Controller

	38.2 DMA Registers
	Register 38-1: DMAxCON: DMA Channel x Control Register
	Register 38-2: DMAxREQ: DMA Channel x IRQ Select Register
	Register 38-3: DMAxSTA: DMA Channel x DPSRAM Start Address Offset Register A
	Register 38-4: DMAxSTB: DMA Channel x DPSRAM Start Address Offset Register B
	Register 38-5: DMAxPAD: DMA Channel x Peripheral Address Register
	Register 38-6: DMAxCNT: DMA Channel x Transfer Count Register
	Register 38-7: DSADR: Most Recent DMA DPSRAM Address Register
	Register 38-8: DMACS0: DMA Controller Status Register 0 (Continued)
	Register 38-9: DMACS1: DMA Controller Status Register 1

	38.3 DMA Block Diagram
	Figure 38-2: DMA Controller Block Diagram

	38.4 DMA Data Transfer
	Figure 38-3: DMA Data Transfer Example

	38.5 DMA Set Up
	38.5.1 DMA Channel to Peripheral Association Setup
	Table 38-1: DMA Channel to Peripheral Associations

	38.5.2 Peripheral Configuration Setup
	Table 38-2: Configuration Considerations for DMA-ready Peripherals (Continued)

	38.5.3 Memory Address Initialization
	Figure 38-4: Data Memory Map for dsPIC33F/PIC24H Devices with 16 Kbytes RAM
	Figure 38-5: Primary and Secondary Buffer Allocation in DMA Memory
	Figure 38-6: Primary and Secondary DMA Buffer Allocation with MPLAB® IDE

	38.5.4 DMA Transfer Count Setup
	38.5.5 Operating Mode Setup

	38.6 DMA Operating Modes
	38.6.1 Word or Byte Data Transfer
	38.6.2 Transfer Direction
	38.6.3 Full or Half Block Transfer Interrupts
	Figure 38-7: Half Block Transfer Mode
	Table 38-3: Interrupt Controller Settings for Enabling/Disabling DMA Interrupts
	Example 38-1: Code to Enable DMA Channel 0 Interrupt
	Table 38-4: Interrupt Controller Settings for Clearing DMA Interrupt Status Flags
	Example 38-2: Code to Clear DMA Channel 0 Interrupt

	38.6.4 Register Indirect with Post-Increment Addressing Mode
	Figure 38-8: Data Transfer with Register Indirect with Post-Increment Addressing
	Example 38-3: Code for Output Compare and DMA with Register Indirect Post-Increment Mode

	38.6.5 Register Indirect without Post-Increment Addressing Mode
	Figure 38-9: Contrast of Data Transfer with and without Post-Increment Addressing
	Example 38-4: Code for Input Capture and DMA with Register Indirect without Post-Increment Addressing

	38.6.6 Peripheral Indirect Addressing Mode
	Figure 38-10: Address Offset Generation in Peripheral Indirect Addressing Mode
	Figure 38-11: Data Transfer from ADC with Register Indirect Addressing
	Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing
	Example 38-5: Code for Data Transfer from ADC with Register Indirect Addressing (Continued)
	Figure 38-12: Data Transfer from ADC with Peripheral Indirect Addressing
	Example 38-6: DMA Buffer Alignment with MPLAB® C30
	Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing
	Example 38-7: Code for ADC and DMA with Peripheral Indirect Addressing (Continued)
	Figure 38-13: Data Transfer from ECAN™ with Peripheral Indirect Addressing
	Example 38-8: DMA Buffer Alignment with MPLAB® C30
	Example 38-9: Code for ECAN™ and DMA with Peripheral Indirect Addressing
	Figure 38-14: Data Transfer from ECAN™ with Register Indirect Addressing

	38.6.7 One-Shot Mode
	Figure 38-15: Data Block Transfer with One-Shot Mode
	Example 38-10: Code for UART and DMA with One-Shot Mode
	Example 38-10: Code for UART and DMA with One-Shot Mode (Continued)

	38.6.8 Continuous Mode
	Figure 38-16: Repetitive Data Block Transfer with Continuous Mode

	38.6.9 Ping-Pong Mode
	Figure 38-17: Repetitive Data Transfer in Ping-Pong Mode
	Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation
	Example 38-11: Code for DCI and DMA with Continuous Ping-Pong Operation (Continued)
	Figure 38-18: Single Block Data Transfer in Ping-Pong Mode

	38.6.10 Manual Transfer Mode
	Figure 38-19: Data Transfer Initiated in Manual Mode

	38.6.11 Null Data Write Mode
	Figure 38-20: Data Transfer with Null Data Write Mode
	Example 38-12: SPI and DMA with Null Data Write Mode


	38.7 Starting DMA Transfer
	38.7.1 Starting DMA with the Serial Peripheral Interface (SPI)
	38.7.2 Starting DMA with the Data Converter Interface (DCI)
	38.7.3 Starting DMA with the UART

	38.8 DMA Channel Arbitration and Overruns
	Table 38-5: Overrun Handling by DMA-Ready Peripherals

	38.9 Debugging Support
	38.10 Data Write Collisions
	Example 38-13: DMA Controller Trap Handling

	38.11 Operation in Power-Saving Modes
	38.11.1 Sleep Mode
	38.11.2 Idle Mode

	38.12 Register Map
	Table 38-6: DMA-Associated Register Map (Continued)

	38.13 Related Application Notes
	38.14 Revision History

	Worldwide Sales and Service

